
 

13 | I J E E S D  
 

 

International Journal of Engineering and Emerging Scientific Discovery 

ISSN:  2536-7250 (Print): 2536-7269 (Online) 

Volume 6, Number 1, March 2021 

http://www.casirmediapublishing.com 

  THEORETICAL EVALUATION OF STEPS APPROACHING 

ZERO EMISSION ON A DOUBLE THICK BARRIER OF A 

GAMMA PARTICLE 

 

¹E. W. Likta, ²M. A. Abdul Azeez, ² F. W. Burari and ² O. W. Olasoji 

¹ Department of Physics, University of Maiduguri, Maiduguri, Borno State, Nigeria 

² Department of Physics, Abubakar Tafawa Balewa University, Bauchi, Nigeria 

Email: emmalikta2014@gmail.com 

 

ABSTRACT 

The goal of this work is to obtain tunneling probability of a gamma particle. The application 

of Schrӧdinger’s equation in barrier penetration has been applied to gamma particle decay 

for light, medium and heavy nuclei. Gamma particle tunneling probability has been 

calculated analytically. Decay probability computed for each gamma particle emitting 

nucleus shows interesting variations. Log plot of calculated Decay constant plotted against 

atomic number (Z), mass number (A) and Energy for gamma particle emitting nucleus 

shows the variations interesting.   Half-life which is a function of decay probability plotted 

against gamma particle energy or against atomic number of gamma particle emitting 

nucleus shows the variations of decay probabilities. Log plot of Calculated Half-life plotted 

against atomic number (Z), mass number (A) and Energy for gamma particle emitting 

nucleus shows interesting variations of decay probabilities. Calculated half-lives compared 

with experimental half-lives for each gamma particle emitting nucleus shows results which 

are in good agreement. 
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INTRODUCTION 

Gamma decay is a type of radioactive decay in which gamma rays are emitted. 

Gamma decay occurs when a nuclide is produced in an excited state, gamma 

emission occurring by transition to a lower energy state. It can occur in 

association with alpha decay and beta decay (Raju et al., 2006). A gamma ray 

or gamma radiation (symbol γ), is a penetrating electromagnetic radiation 

arising from the radioactive decay of atomic nuclei. It consists of the shortest 

wavelength electromagnetic waves and so imparts the highest photon energy. 

Paul Villard, a French chemist and physicist, discovered gamma radiation in 

1900 while studying radiation emitted by radium (Villard, 1900a). In 1903, 

Ernest Rutherford named this radiation gamma rays based on their relatively 

strong penetration of matter; he had previously discovered two less 

penetrating types of decay radiation, which he named alpha rays and beta rays 

in ascending order of penetrating power (Rutherford, 1903). Gamma rays from 

radioactive decay are in the energy range from a few kilo electron volts ( keV ) 
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to approximately 8 Mega electron volts (~8 MeV), corresponding to the 

typical energy levels in nuclei with reasonably long lifetimes. The energy 

spectrum of gamma rays can be used to identify the decaying radionuclides 

using gamma spectroscopy. Very-high-energy gamma rays in the 100–1000 tera 

electron volt ( TeV ) range have been observed from sources such as the 

Cygnus X-3 micro quasar. Natural sources of gamma rays originating on 

Earth are mostly as a result of radioactive decay and secondary radiation from 

atmospheric interactions with cosmic ray particles (Villard, 1900b. However, 

there are other rare natural sources, such as terrestrial gamma-ray flashes, 

which produce gamma rays from electron action upon the nucleus. Notable 

artificial sources of gamma rays include fission, such as that which occurs in 

nuclear reactors, and high energy physics experiments, such as neutral pion 

decay and nuclear fusion. Gamma rays and X-rays are both electromagnetic 

radiation, and since they overlap in the electromagnetic spectrum, the 

terminology varies between scientific disciplines. In some fields of physics, 

they are distinguished by their origin: Gamma rays are created by nuclear 

decay, while in the case of X-rays; the origin is outside the nucleus. In 

astrophysics, gamma rays are conventionally defined as having photon 

energies above 100 keV and are the subject of gamma ray astronomy, while 

radiation below 100 keV is classified as X-rays and is the subject of X- ray 

astronomy. This convention stems from the early man-made X-rays, which 

had energies only up to 100 keV, whereas many gamma rays could go to higher 

energies. A large fraction of astronomical gamma rays are screened by Earth's 

atmosphere. 

 

MATERIALS AND METHOD 

Materials 

The materials used are the𝑆𝑐ℎ𝑟�̈�𝑑𝑖𝑛𝑔𝑒𝑟’s equation. 

 

Method  

We now consider the beam of a particle incident upon a square potential barrier 

of height 𝑉𝑜 presumed positive for now and width a. As mentioned above, this 

geometry is particularly important as it includes the simplest example of 

scattering phenomenon in which a beam of particles is ‘deflected’ by a local 

potential. Moreover, this one-dimensional geometry also provides a plat form 

to explore a phenomenon peculiar to quantum mechanics quantum tunneling 

(Dyson, 1951).  
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 The potential energy variation in the case of a rectangular potential barrier

  shown in figure 1 is given by 

V(x)     =
0,   𝑥 < 0       
𝑉𝑜,   0 < 𝑥 < 𝐿

}

V(x)     =
0,   𝑥 < 0       
𝑉𝑜,   0 < 𝑥 < 𝐿

}
        

 (1) 

 

Fig. 1: a rectangular double thick potential barrier of width L and height𝑉0. 

 

Let us consider two cases 

(i) 0 < 𝐸 < 𝑉0 Classically a particle of energy E if incident from the left 

would be reflected at the double thick barriers as it cannot enter (0 <
𝑥 < 𝐿) in which its K.E is negative. To describe the behavior of 

particle quantum mechanically, we will have to solve  the 

𝑆𝑐ℎ𝑟�̈�𝑑𝑖𝑛𝑔𝑒𝑟 equation, 

(
𝑑2𝜑(𝑥)

𝑑𝑥2
+
2𝑚

ħ2
[𝐸 − 𝑉(𝑥)]𝜑(𝑥))(

𝑑2𝜑(𝑥)

𝑑𝑥2
+
2𝑚

ħ2
[𝐸 − 𝑉(𝑥)]𝜑(𝑥)) = 0 

Or 

(
𝑑2𝜑(𝑥)

𝑑𝑥2
 +  𝑘2𝜑(𝑥)) (

𝑑2𝜑(𝑥)

𝑑𝑥2
 +  𝑘2𝜑(𝑥)) = 0, 𝑘2 = 

2𝑚 𝐸

ħ2
 , 𝑥 < 0 𝑎𝑛𝑑 𝑥 > 𝐿   (2) 

 

And  

(
𝑑2𝜑(𝑥)

𝑑𝑥2
+ 𝛾2𝜑(𝑥))(

𝑑2𝜑(𝑥)

𝑑𝑥2
+ 𝛾2𝜑(𝑥)) = 0, 𝛾2 = 

2𝑚(𝑉0−𝐸)

ħ2
 , 0 < 𝑥 < 𝐿  (3) 

The general solutions of these equations are given by 
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𝜑2(𝑥) = ( 𝐴 𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥)( 𝐴 𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥) , 𝑥 < 0    (4)        

𝜑2(𝑥) = ( 𝐶𝑒𝛼𝑥 + 𝐷𝑒−𝛼𝑥)( 𝐶𝑒𝛼𝑥 + 𝐷𝑒−𝛼𝑥), 0 < 𝑥 < 𝐿    (5)                                   

𝜑2(𝑥) =  (𝐹 𝑒𝑖𝑘𝑥 + 𝐺𝑒−𝑖𝑘𝑥)(𝐹 𝑒𝑖𝑘𝑥 + 𝐺𝑒−𝑖𝑘𝑥), 𝑥 < 𝐿     (6) 

 

Notice that we allow for waves traveling in both the directions for 𝑥 < 0 

representing the incident and reflected waves. We must also allow for 𝑒𝛾𝑥 and 

𝑒−𝛾𝑥term in the region 0 < 𝑥 < 𝐿 because x is finite and there is no danger of 

𝜑 becoming infinite. We have only a wave traveling from left to right of 𝑥 > 𝐿 

as there cannot be any wave travelling from right to left (reflected wave) since 

there is no discontinuity in the potential. Hence we must set G=0. The 

solution, therefore would be 

𝜑2(𝑥) =  (𝐹 𝑒𝑖𝑘𝑥)(𝐹 𝑒𝑖𝑘𝑥), 𝑥 > 𝐿       (7) 

The continuity conditions (that is, 𝜑 𝑎𝑛𝑑 𝑑𝜑 𝑑𝑥⁄   𝑏𝑒 continuous ) at x = 0 

and at x = 𝐿 yield 

At x = 0, 𝐴 + 𝐵 = 𝐶 + 𝐷 𝑎𝑛𝑑 𝑖𝑘(𝐴 − 𝐵) = 𝛼(𝐶 + 𝐷)     (8) 

At 𝑥 > 𝐿, 

(𝐶𝑒𝛾𝐿 + 𝐷𝑒−𝛾𝐿)(𝐶𝑒𝛾𝐿 + 𝐷𝑒−𝛾𝐿) = (𝐹 𝑒𝑖𝑘𝐿)
2
 𝑎𝑛𝑑 𝛾(𝐶𝑒𝛾𝐿 + 𝐷𝑒−𝛾𝐿)𝛾(𝐶𝑒𝛾𝐿 +

𝐷𝑒−𝛾𝐿) = (𝑖𝑘𝐹 𝑒𝑖𝑘𝐿)
2
         (9) 

There are number of ways of solving these equations. If solution leads to  

𝐶2 = (
[(𝛾+𝑖𝑘)𝐴+(𝛾−𝑖𝑘)𝐵]

2𝛾
) (

[(𝛾+𝑖𝑘)𝐴+(𝛾−𝑖𝑘)𝐵]

2𝛾
)

𝐷2 = (
[(𝛾−𝑖𝑘)𝐴+(𝛾+𝑖𝑘)𝐵]

2𝛾
) (

[(𝛾−𝑖𝑘)𝐴+(𝛾+𝑖𝑘)𝐵]

2𝛾
)
}  𝑥 = 0    

                (10) 

Similarly  

𝐶2 = (
[(𝛾+𝑖𝑘)𝐴𝑒−(𝛾−𝑖𝑘)𝐿𝐹]

2𝛾
) (

[(𝛾+𝑖𝑘)𝐴𝑒−(𝛾−𝑖𝑘)𝐿𝐹]

2𝛾
)

𝐷2 = (
[(𝛾−𝑖𝑘)𝐴𝑒(𝛾+𝑖𝑘)𝐿𝐹]

2𝛾
) (

[(𝛾−𝑖𝑘)𝐴𝑒(𝛾+𝑖𝑘)𝐿𝐹]

2𝛾
)
}  𝑥 = 𝐿    

   (11)         

 Equating the values of 𝐶2 and 𝐷2 to each other yield 

((𝛾 + 𝑖𝑘)𝐴 + (𝛾 − 𝑖𝑘)𝐵)
2
= ((𝛾 + 𝑖𝑘)𝐴𝑒−(𝛾−𝑖𝑘)𝐿𝐹)((𝛾 + 𝑖𝑘)𝐴𝑒−(𝛾−𝑖𝑘)𝐿𝐹)

   (12) 

And 

((𝛾 − 𝑖𝑘)𝐴 + (𝛾 + 𝑖𝑘)𝐵)
2
= ((𝛾 − 𝑖𝑘)𝐴𝑒(𝛾+𝑖𝑘)𝐿𝐹)((𝛾 − 𝑖𝑘)𝐴𝑒(𝛾+𝑖𝑘)𝐿𝐹) 

  (13) 

And so 



 

17 | I J E E S D  
 

 

International Journal of Engineering and Emerging Scientific Discovery 

ISSN:  2536-7250 (Print): 2536-7269 (Online) 

Volume 6, Number 1, March 2021 

http://www.casirmediapublishing.com 

 (𝐵 𝐴⁄ )2 = (
(𝛾−𝑖𝑘)

(𝛾+𝑖𝑘)
[𝑒(𝛾+𝑖𝑘)𝐿 𝐹 𝐴⁄ − 1]) (

(𝛾−𝑖𝑘)

(𝛾+𝑖𝑘)
[𝑒(𝛾+𝑖𝑘)𝐿 𝐹 𝐴⁄ − 1]) (14) 

Putting the above value of (𝐵 𝐴⁄ )2 in to (3.14) yields  

(
(𝛾 + 𝑖𝑘)+(𝛾 − 𝑖𝑘)2

(𝛾 + 𝑖𝑘)
[𝑒(𝛾+𝑖𝑘)𝐿

𝐹

𝐴
− 1])

2

= ((𝛾 + 𝑖𝑘)𝑒(𝛾+𝑖𝑘)
𝐹

𝐴
) ((𝛾 + 𝑖𝑘)𝑒(𝛾+𝑖𝑘)

𝐹

𝐴
) 

Or 

(
(𝛾 + 𝑖𝑘)2 + (𝛾 − 𝑖𝑘)2

(𝛾 + 𝑖𝑘)
[𝑒(𝛾+𝑖𝑘)𝐿

𝐹

𝐴
− 1])

2

= ((𝛾 + 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)
𝐹

𝐴
) ((𝛾 + 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)

𝐹

𝐴
) 

Or 

((𝛾 + 𝑖𝑘)2 − (𝛾 − 𝑖𝑘)2)2

= (
𝐹

𝐴
[(𝛾 + 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)𝐿

− (𝛾 − 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)𝐿]) (
𝐹

𝐴
[(𝛾 + 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)𝐿

− (𝛾 − 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)𝐿]) 

(
𝐹

𝐴
)
2

= (
4𝑖𝑘𝛾

[(𝛾 + 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)𝐿 − (𝛾 − 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)𝐿]
) (

4𝑖𝑘𝛾

[(𝛾 + 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)𝐿 − (𝛾 − 𝑖𝑘)2𝑒(𝛾+𝑖𝑘)𝐿]
) 

After multiplying the numerator and denominator 𝑒(𝛾−𝑖𝑘)𝐿 

(
𝐹

𝐴
)
2

= (
4𝑖𝑘𝛾𝑒(𝛾−𝑖𝑘)𝐿

[(𝛾 + 𝑖𝑘)2 − (𝛾 − 𝑖𝑘)2𝑒2𝛾𝐿]
) (

4𝑖𝑘𝛾𝑒(𝛾−𝑖𝑘)𝐿

[(𝛾 + 𝑖𝑘)2 − (𝛾 − 𝑖𝑘)2𝑒2𝛾𝐿]
) 

= (
4𝑖𝑘𝛾𝑒(𝛾−𝑖𝑘)𝐿

[(𝛾 + 𝑖𝑘)2 − (𝛾 − 𝑖𝑘)2𝑒2𝛾𝐿]
) (

4𝑖𝑘𝛾𝑒(𝛾−𝑖𝑘)𝐿

[(𝛾 + 𝑖𝑘)2 − (𝛾 − 𝑖𝑘)2𝑒2𝛾𝐿]
) 

= (
4𝑖𝑘𝛾𝑒(𝛾−𝑖𝑘)𝐿

[(𝛾2−𝑘2)(1−𝑒2𝛾𝐿)+2𝑖𝑘𝛾 (1+𝑒2𝛾𝐿)]
) (

4𝑖𝑘𝛾𝑒(𝛾−𝑖𝑘)𝐿

[(𝛾2−𝑘2)(1−𝑒2𝛾𝐿)+2𝑖𝑘𝛾 (1+𝑒2𝛾𝐿)]
)  (15) 

Putting the value of (
𝐹

𝐴
)
2
 from above into equation (5), we get 

(
𝐹

𝐴
)
2
= (

(𝛾2−𝑘2)(𝑒2𝛾𝐿−1)

[(𝛾2−𝑘2)(1−𝑒2𝛾𝐿)+2𝑖𝑘𝛾 (1+𝑒2𝛾𝐿)]
) (

(𝛾2−𝑘2)(𝑒2𝛾𝐿−1)

[(𝛾2−𝑘2)(1−𝑒2𝛾𝐿)+2𝑖𝑘𝛾 (1+𝑒2𝛾𝐿)]
) 

  (16) 
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It may be mentioned here that in case one is interest in finding 𝐶 𝐴⁄ and𝐷 𝐴⁄ , 

this can be achieved by substituting the value of (
𝐹

𝐴
)
2
 from (15) into equations 

(11).  

From (7), the reflection coefficient (or the probability of reflection) is given by 

𝑅 =
𝑗𝑟𝑒𝑓
𝑗𝑖𝑛𝑐

= (
ħ𝑘 𝑚⁄ |𝐵|2

ħ𝑘 𝑚⁄ |𝐴|2
)

2

= (|𝐵 𝐴⁄ |2)2 = [(
𝐵

𝐴
) ∗ (

𝐵

𝐴
)]
2

 

= (
(𝛾2 − 𝑘2)2(𝑒2𝛾𝐿 − 1)2

[(𝛾2 − 𝑘2)(1 − 𝑒2𝛾𝐿)2 + 4𝑘2𝛾2(1 + 𝑒2𝛾𝐿)2]
)(

(𝛾2 − 𝑘2)2(𝑒2𝛾𝐿 − 1)2

[(𝛾2 − 𝑘2)(1 − 𝑒2𝛾𝐿)2 + 4𝑘2𝛾2(1 + 𝑒2𝛾𝐿)2]
) 

After dividing the numerator and denominator by (1 − 𝑒2𝛾𝐿)2 one gets 

𝑅2 =

(

 
 (𝛾2 − 𝑘2)2

[(𝛾2 − 𝑘2)2 + 4𝑘2𝛾2 {
(1 + 𝑒2𝛾𝐿)
(1 − 𝑒2𝛾𝐿)

}
2

]
)

 
 

(

 
 (𝛾2 − 𝑘2)2

[(𝛾2 − 𝑘2)2 + 4𝑘2𝛾2 {
(1 + 𝑒2𝛾𝐿)
(1 − 𝑒2𝛾𝐿)

}
2

]
)

 
 

 

Or 

=
(𝛾2 − 𝑘2)2

(𝛾2 − 𝑘2) + 4𝑘2𝛾2 (
1 + 𝑒4𝛾𝐿 + 2𝑒2𝛾𝐿

1 + 𝑒4𝛾𝐿 − 2𝑒2𝛾𝐿
− 1) + 4𝑘2𝛾2

 

= (
(𝛾2 − 𝑘2)2

(𝛾2 − 𝑘2) + 4𝑘2𝛾2 {
4

(𝑒2𝛾𝐿 + 𝑒−2𝛾𝐿 − 2)
}
)(

(𝛾2 − 𝑘2)2

(𝛾2 − 𝑘2) + 4𝑘2𝛾2 {
4

(𝑒2𝛾𝐿 + 𝑒−2𝛾𝐿 − 2)
}
) 

 

𝑅2 =
(𝛾2 − 𝑘2)2

(𝛾2 − 𝑘2) + 
4𝑘2𝛾2 1

(
𝑒𝛾𝐿 − 𝑒−𝛾𝐿

2 )
2

 

=
(𝛾2−𝑘2)2

[(𝛾2−𝑘2)+
4𝑘2𝛾2𝛾2

sinħ𝛾𝐿
]
         

  (17) 

After substituting the values of 𝛾2and𝑘2, one gets 

𝑅2 = (
𝑉𝑂
2

[𝑉𝑂
2 +

4𝐸(𝑉𝑂 − 𝐸)
sin ħ𝛼𝐿

]
)(

𝑉𝑂
2

[𝑉𝑂
2 +

4𝐸(𝑉𝑂 − 𝐸)
sin ħ𝛼𝐿

]
) 

 

= [1 +
4𝐸(𝑉𝑂−𝐸)

𝑉𝑂
2 sin ħ𝛼𝐿

]
−1

× [1 +
4𝐸(𝑉𝑂−𝐸)

𝑉𝑂
2 sin ħ𝛼𝐿

]
−1

     (18) 

The probability of finding the particle in a region𝑋 > 0, is given the name 

transmission coefficient T and using equation (15) we have             
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 𝑇2 =
𝑗𝑟𝑒𝑓

𝑗𝑖𝑛𝑐
= (

ħ𝑘 𝑚⁄ |𝐹|2

ħ𝑘 𝑚⁄ |𝐴|2
)

2

= (|
𝐹

𝐴
|
2

)

2

= [(
𝐹

𝐴
) ∗ (

𝐹

𝐴
)]
2

 

= (
16𝑘2𝛾2𝑒2𝛾𝐿

[(𝛾2 − 𝑘2)(1 − 𝑒2𝛾𝐿)2 + 4𝑘2𝛾2(1 + 𝑒2𝛾𝐿)2]
) (

16𝑘2𝛾2𝑒2𝛾𝐿

[(𝛾2 − 𝑘2)(1 − 𝑒2𝛾𝐿)2 + 4𝑘2𝛾2(1 + 𝑒2𝛾𝐿)2]
) 

= (
16𝑘2𝛾2

(𝛾2 − 𝑘2)2(𝑒2𝛾𝐿 + 𝑒2𝛾𝐿 − 2) + 4𝑘2𝛾2(𝑒2𝛾𝐿 + 𝑒2𝛾𝐿 + 2)
)(

16𝑘2𝛾2

(𝛾2 − 𝑘2)2(𝑒2𝛾𝐿 + 𝑒2𝛾𝐿 − 2) + 4𝑘2𝛾2(𝑒2𝛾𝐿 + 𝑒2𝛾𝐿 + 2)
) 

Adding and subtracting 4𝑘2𝛾2(𝑒2𝛾𝐿 + 𝑒−2𝛾𝐿 − 2) from the denominator, one get 

= (
16𝑘2𝛾2

(𝛾2 − 𝑘2)2(𝑒2𝛾𝐿 + 𝑒2𝛾𝐿 − 2) + 16𝑘2𝛾2
)(

16𝑘2𝛾2

(𝛾2 − 𝑘2)2(𝑒2𝛾𝐿 + 𝑒2𝛾𝐿 − 2) + 16𝑘2𝛾2
) 

=

(

 
 4𝑘2𝛾2

[(𝛾2 − 𝑘2)2 (
𝑒𝛾𝐿 − 𝑒𝛾𝐿

2
)
2

+ 4𝑘2𝛾2]
)

 
 

(

 
 4𝑘2𝛾2

[(𝛾2 − 𝑘2)2 (
𝑒𝛾𝐿 − 𝑒𝛾𝐿

2
)
2

+ 4𝑘2𝛾2]
)

 
 

 

= (
4𝑘2𝛾2

(𝛾2−𝑘2)2 sin ħ2𝛾𝐿 +4𝑘2𝛾2
) (

4𝑘2𝛾2

(𝛾2−𝑘2)2 sin ħ2𝛾𝐿 +4𝑘2𝛾2
)    

  (19) 

Putting the value of 𝛾2 and 𝑘2 one gets 

𝑇2 = [1 +
𝑉𝑂
2 sin ħ2𝛼𝐿

4𝐸(𝑉𝑂−𝐸)
]
−1

× [1 +
𝑉𝑂
2 sin ħ2𝛼𝐿

4𝐸(𝑉𝑂−𝐸)
]
−1

     

  (20) 

One may, however check that𝑅 + 𝑇 = 1. There are two interesting situations 

in which equations (17) to (20) become simpler considering the purely formal 

limit in whichħ → 0. The quantity ħ is a physical constant, but we can consider 

as a mathematical variable in order to examine the classical limit of our 

formulas. Asħ → 0, k and 𝛾 approach infinity and hence𝑇 → 0, 𝑅 → 1, which 

is of course, the proper behavior of a classical particle with 𝐸 < 𝑉𝑂. The other 

interesting limit occurs for high and wide barrier, that is, when 𝛾 ≫ 1. In that 

case sin ħ2 𝛾𝐿 ≈
1

2
𝑒𝛾𝐿, hence form (3.20) after neglecting 1 in comparison to the 

other which is very large, one gets 

𝑇2 =

(

 
 
 
 

4𝐸(𝑉𝑂 − 𝐸)

𝑉𝑂
2 [
1
2
𝑒
−2{

2𝑚(𝑉𝑂−𝐸)
ħ2

}

1
2
𝐿
]

2

)

 
 
 
 

(

 
 
 
 

4𝐸(𝑉𝑂 − 𝐸)

𝑉𝑂
2 [
1
2
𝑒
−2{

2𝑚(𝑉𝑂−𝐸)
ħ2

}

1
2
𝐿
]

2

)

 
 
 
 

 

= (16 
𝐸

𝑉𝑂
(1 −

𝐸

𝑉𝑂
)𝑒
−2{

2𝑚(𝑉𝑂−𝐸)

ħ2
}

1
2
𝐿
)(16 

𝐸

𝑉𝑂
(1 −

𝐸

𝑉𝑂
)𝑒
−2{

2𝑚(𝑉𝑂−𝐸)

ħ2
}

1
2
𝐿
)  

  (21)  

From equation (21) transmission coefficient would be given by 
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𝑇2 = (16 
𝐸

𝑉(𝑟0)
[1 −

𝐸

𝑉(𝑟0)
] 𝑒−2𝛾𝐿) (16 

𝐸

𝑉(𝑟0)
[1 −

𝐸

𝑉(𝑟0)
] 𝑒−2𝛾𝐿)  22) 

γL ≫ 1, the most important factor in the above equation is the exponential. 

The factor in front of the exponential which is of the order of 2 is not significant 

since its variation with V and E is negligible  as  compared to the variation in 

exponential itself(Chaddha, 1983). Hence we can write 

𝐼𝑛𝑇2 ≃ −4𝛾𝐿         (23) 

For a rectangular double thick potential barrier of thickness dx, we can write 

𝐼𝑛𝑇2 ≃ −4𝛾𝑑𝑥         (24) 

Where 

𝛾4 = (
2𝑚

ℏ2
[𝑉(𝑥) − 𝐸]) (

2𝑚

ℏ2
[𝑉(𝑥) − 𝐸]) 

= (
2𝑚

ℏ2
[(

2𝑍𝑒2

4𝜋𝜖0𝑥
) − 𝐸]) (

2𝑚

ℏ2
[(

2𝑍𝑒2

4𝜋𝜖0𝑥
) − 𝐸])                (25) 

making𝛾 a function of x 

Equation (25) expression for the transmission coefficient or tunneling 

probability of a rectangular barrier. The actual barrier encountered by gamma 

particle has an exponential tail. We can approximate it as consisting of many 

rectangular barrier of decreasing height and obtain the total probability by 

summing the tunneling probability of each barrier the region between  𝑟0and𝑟1. 

In this entire region, of course 𝐸 < 𝑉. Hence taking the summation over all the 

rectangular potential barriers, we gets 

𝐼𝑛 𝑇2 = (−2∫ 𝛾(𝑥)𝑑𝑥
𝑟1
𝑟0

) (−2∫ 𝛾(𝑥)𝑑𝑥
𝑟1
𝑟0

)     (26) 

From equation (3.25) that 𝛾 can be while is a function of x 

𝛾 = ((
2𝑚

ℏ
)

1

2
((

2𝑍𝑒2

4𝜋𝜖0𝑥
) − 𝐸)

1

2

)((
2𝑚

ℏ
)

1

2
((

2𝑍𝑒2

4𝜋𝜖0𝑥
) − 𝐸)

1

2

)   (27) 

Substituting equation (27) in to equation (26) 

𝐼𝑛 𝑇2 = (−2∫ (
2𝑚

ℏ
)

1

2
((

2𝑍𝑒2

4𝜋𝜖0𝑥
) − 𝐸)

1

2

 𝑑𝑥
𝑟1
𝑟0

)(−2∫ (
2𝑚

ℏ
)

1

2
((

2𝑍𝑒2

4𝜋𝜖0𝑥
) −

𝑟1
𝑟0

𝐸)

1

2

 𝑑𝑥)  (28) 

Making use of equation (21), leads to 

𝐼𝑛 𝑇2 = (−2 (
2𝑚

ℏ
)

1

2
∫ (

𝑟0

𝑥
− 1)

1

2
 𝑑𝑥

𝑟1
𝑟0

)(−2(
2𝑚

ℏ
)

1

2
∫ (

𝑟0

𝑥
− 1)

1

2
 𝑑𝑥

𝑟1
𝑟0

) (29) 
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 Putting 𝑥 =  𝑟1 cos² 𝜃, 𝑑𝑥 = 𝑟12 cos 𝜃 (− sin 𝜃  𝑑𝜃) and also changing the 

limits to 𝜃( 𝑎𝑡 𝑥 = 𝑟0, 𝜃0 = cos̵̵ˉ¹ (
𝑟0

𝑥
)

1

2
 𝑎𝑛𝑑 𝑎𝑡 𝑥 = 𝑟0, 𝜃0 = 0), one gets 

𝐼𝑛 𝑇2 = (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫ (

1

cos²𝜃
−

𝜃0
0

1)

1

2
sin 𝜃 cos 𝜃 𝑑𝑥)(−2(

2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫ (

1

cos² 𝜃
− 1)

1

2
sin 𝜃 cos 𝜃 𝑑𝑥

𝜃0
0

) (30) 

Since 

((
1

cos² 𝜃
− 1)

1
2
)

2

= (
(1 − cos² 𝜃)

1
2

cos 𝜃
)

2

= (
sin 𝜃

cos 𝜃
)
2

 

The double thick potential barrier is on the x coordinate 

𝐼𝑛 𝑇2 = (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫ sin² 𝜃 𝑑𝜃

𝜃0
0

)(−2(
2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫ sin² 𝜃 𝑑𝜃

𝜃0
0

) (31) 

Using trigonometric rule and integrating 

𝐼𝑛 𝑇2 = (−2(
2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫

1−cos2 𝜃 

2
𝑑𝜃

𝜃0

0
)(−2 (

2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫

1−cos2 𝜃 

2
𝑑𝜃

𝜃0

0
)  (32) 

= (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫ (

1

2
− 

cos2 𝜃 

2
) 𝑑𝜃

𝜃0

0
)(−2 (

2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫ (

1

2
− 

cos2 𝜃 

2
)𝑑𝜃

𝜃0

0
)  (33) 

= (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫

1

2
𝑑𝜃 −

1

2
∫ cos 2 𝜃 
𝜃0
0

𝑑𝜃
𝜃0
0

) (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 ∫

1

2
𝑑𝜃 −

1

2
∫ cos 2 𝜃 
𝜃0
0

𝑑𝜃
𝜃0
0

)             (34) 

= (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 (

1

2
∫ 𝑑𝜃 −

1

2
∫ cos 2 𝜃 
𝜃0
0

𝑑𝜃
𝜃0
0

))(−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 (

1

2
∫ 𝑑𝜃 −

1

2
∫ cos 2 𝜃 
𝜃0
0

𝑑𝜃
𝜃0
0

))          (35) 

= (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1(𝜃0 − (cos

2 𝜃 − sin2 𝜃)))(−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1(𝜃0 − (cos

2 𝜃 − sin2 𝜃)))             (36) 

= (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 (𝜃0 − (cos

2 𝜃 − (1 − cos2 𝜃))))(−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1 (𝜃0 − (cos

2 𝜃 − (1 − cos2 𝜃)))) (37) 

= (−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1(𝜃0 − (cos

2 𝜃 + cos2 𝜃 − 1)))(−2 (
2𝑚 𝐸

ℏ
)

1

2
𝑟1(𝜃0 − (cos

2 𝜃 + cos2 𝜃 − 1)))              (38) 

= (−2(
2𝑚 𝐸

ℏ
)

1

2
𝑟1(𝜃0 − (2 cos

2 𝜃 − 1)))(−2(
2𝑚 𝐸

ℏ
)

1

2
𝑟1(𝜃0 − (2 cos

2 𝜃 − 1)))         (39) 

After putting the value of E  
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𝐼𝑛 𝑇2 = (−2 [(
2𝑚 

ℏ
)

1

2 2𝑍𝑒2

4𝜋𝜖0𝑟1
]

1 2⁄

[cos̵̵ˉ¹ (
𝑟0

𝑟1
)

1

2
− (

𝑟0

𝑟1
)

1

2
(1 −

𝑟0

𝑟1
)

1

2
])(−2 [(

2𝑚 

ℏ
)

1

2 2𝑍𝑒2

4𝜋𝜖0𝑟1
]

1 2⁄

[cos̵̵ˉ¹ (
𝑟0

𝑟1
)

1

2
− (

𝑟0

𝑟1
)

1

2
(1 −

𝑟0

𝑟1
)

1

2
])  (40) 

Because of the fact that the potential barrier is relatively wide, 𝑟1 ≫ 𝑟0, 

cos̵̵ˉ¹ (
𝑟0
𝑥
)

1
2
 ≈
𝜋

2
−(
𝑟0
𝑥
)

1
2
 

 As cos {
𝜋

2
− (

𝑟0

𝑟1
)

1

2
} = sin (

𝑟0

𝑟1
)

1

2
≃ (

𝑟0

𝑟1
)

1

2
 

If (
𝑟0

𝑟1
) ≪ 1 

Also 

(
𝑟0
𝑟1
)

1
2
≈ (

𝑟0
𝑟1
)

1
2
≈ 1 

Hence from equation (39) 

𝐼𝑛 𝑇2 = (−2((
2𝑚 

ℏ
)

1

2 2𝑍𝑒2

4𝜋𝜖0𝑟1
)

1

2

[𝜋 2⁄ − 2 (
𝑟0

𝑟1
)

1

2
])(−2((

2𝑚 

ℏ
)

1

2 2𝑍𝑒2

4𝜋𝜖0𝑟1
)

1

2

[𝜋 2⁄ −

2 (
𝑟0

𝑟1
)

1

2
]) (41) 

Replacing 𝑟1 by 𝑟1 =
2𝑍𝑒2

4𝜋𝜖0
 and simplifying 

𝐼𝑛𝑇2 = (4 
𝑒

ℏ
(
𝑚

𝜋𝜖0
)

1

2
𝑍
1

2𝑟0
1

2 −
𝑒2

ℏ𝜖0
(
𝑚

2
)

1

2
 𝑍 𝐸−

1

2)(4 
𝑒

ℏ
(
𝑚

𝜋𝜖0
)

1

2
𝑍
1

2𝑟0
1

2 −

𝑒2

ℏ𝜖0
(
𝑚

2
)

1

2
 𝑍 𝐸−

1

2) (42) 

𝐼𝑛𝑇2 = 42 (
𝑒

ℏ
)
2

(
𝑚

𝜋𝜖0
) 𝑍

1

4𝑟0
1

4 −
𝑒4

(ℏ𝜖0)
2 (
𝑚

2
) 𝑍2𝐸−

1

4     

 (43) 

Equation (43) gives the natural logarithm of the tunneling probability of the 

gamma particle. Results 

We assess the ability of gamma particle in tunneling through a barrier, its 

relationship with decay constant and half-life using equation (43) 
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 𝐼𝑛 𝑇2⏟
𝐾1

= 42
𝑒2

ℏ2
(
𝑚

𝜋𝜖0
)

⏟      
𝐼1

𝑍
1

4𝑟0
1

4

⏟          
𝐽1

−
𝑒4

(ℏ𝜖0)
2 (
𝑚

2
)

⏟      
𝐼2

𝑍2𝐸−
1

4

⏟          
𝐽2

     43 

The constant 𝐼1 and 𝐼2 are to be calculated while: 

𝑍 = atomic number of the daughter nucleus (the gamma emitting nucleus) 

𝑟𝑜 = 1.1 (𝐴𝑑

1

2 + 𝐴𝛾

1

2) × 10−15𝑚 (for each nucleus)     44 

𝐸 = Potential energy of the emitted gamma particle  

     = or energy of decay for each nucleus 

𝑚 = mass of gamma particle 

1 atomic mass unit = 1.66 × 10−27𝑘𝑔 

𝑒 = 1.6 × 10−19𝐶
ℏ = 1.05477 × 10−34𝐽𝑠

∈𝑜= 8.85 × 10
−12𝐹𝑎𝑟𝑎𝑑/𝑚

} all are in S.I unit 

To keep equation (3.64) as simple as possible we calculate the constant 𝐼1 and 

𝐼2 

𝐼1 = 4
2 𝑒

2

ℏ2
(
𝑚

𝜋𝜖0
)          45 

𝐼1 = 8.792420946 × 10
15

        

 46 

𝐼2 =
𝑒4

(ℏ𝜖0)
2 (
𝑚

2
)                                                                                                                         47 

𝐼2 = 2.496984634 × 10
−12

        

 48 

𝐾1 = 𝑇
2
           49 

Let 𝑇2 be 𝐷𝑇 

𝐾1 = 𝐷𝑇           50 

𝐼𝑛𝐷𝑇 = 8.792420946 × 1015𝑍
1

4𝑟0
1

4 − 2.496984634 × 10−12𝑍2𝐸−
1

4                 51 

Equation (51) is used to get the result for tunneling for every 𝛾 emitting nucleus 

as show in Table 4.1 

The decay probability per unit time or constant we write 

𝜆 = Г𝑇           52 

Where Г = number of time per second gamma particle within a nucleus strikes 

the potential barrier 

𝑇 = the probability of transmission through the barrier. 

Assume only one gamma particle exists within a nucleus moving to and fro in 

the nuclear diameter 
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Г =
𝑣

2𝑟0
           

 53 

Where 𝑣 = 𝛾 particle velocity when it finally leaves the nucleus 

𝜆 =
𝑣

2𝑟0
𝐷𝑇           54 

𝑣 = 107𝑚𝑠−1, 𝑟0 = 10
−14𝑚 

𝜆 =
107

2×10−14
𝐷𝑇 ≃ 10−21𝐷𝑇        

 55 

Equation (55) can be used to get the result for decay probability per unit time. 

The half life 𝑡1
2

 is the time taken for half the original number of atom present 

to decay. Mathematically half-life 𝑡1
2

 can written as 

𝑡1
2

=
𝐼𝑛 2

𝜆
           56 

Substitute equation (56) into (55) gives 

 

Table 1: 𝐾𝑟36
75

 to 𝑌𝑏70
157

  gamma particle emitting nuclei and their decay probability 

S/

N 

Nucl

eus  

(name

) 

Ma

ss 

No

. 

(A) 

Z Mas

s 

Exce

ss 

A(K

eV) 

𝑟0        E 

 

𝛾(𝐽) 

In DT(E12) DT Decay constant (E-

20) 

Half-life  

(E23) 

𝑡1
2
 

1 Kr 75 36 132.4 9.526279442 1.081469678E-14 6.728293536 29.53734267 2.953734267 2.046937849 

2 Rb 76 37 2571.1 9.589577676 3.97566408E-13 6.785920598 29.54587108 2.954587108 2.047528866 

3 Sr 80 38 589.0 9.838699101 2.146917582E-14 6.82001297 29.55088249 2.956088249 2.047846157 

4 Y 80 39 385.9 9.838699101 4.524548695E-14 6.920046991 29.56544368 2.956544368 2.048885247 

5 Y 81 39 124.2 9.90 1.357044173E-14 6.930800892 29.56699649 2.956699649 2.046937847 

6 Y 87 39 484.5 10.26011696 5.34005694E-14 6.992986692 29.5792886 2.95792886 2.04961187 

7 Zr 80 40 311.0 9.838699101 5.12696736E-15 6.963896005 29.57177313 2.957177313 2.049323878 

8 Zr 85 40 416.5 10.1414989 2.552670702E-14 7.016960099 29.57935121 2.957935121 2.049849036 

9 Zr 89 40 909.1 10.37737925 6.802844816E-14 7.056410711 29.58509935 2.958509935 2.050247385 

10 Zr 90 40 2186.

2 

10.43551628 5.609222727E-14 7.067274417 29.58649601 2.958649601 2.050344173 

11 Nb 84 41 540.0 10.08166653 6.584948703E-14 6.995280444 29.57625182 2.957265682 2.049634598 

12 Nb 86 41 751.7 10.20098035 1.02411173E-13 7.070740754 29.58698636 2.988698636 2.050378155 

13 Nb 88 41 1057.1 10.31891467 1.026354778E-13 7.09112895 29.58986568 2.958986568 2.050577692 

14 Nb 89 41 1627.

7 

10.37737952 2.285505918E-13 7.101111936 29.5912725 2.95912725 2.050695184 

15 Mo 106 42 465.7 11.32519316 4.381954916E-14 7.30182856 29.51915492 2.961914592 2.052606812 

16 Mo 107 42 400.3 11.37848848 4.897856006E-14 7.310413426 29.62032094 2.962032094 2.052688241 

17 Tc 88 43 741.0 10.31891467 1.10742495E-13 7.176027451 29.60176707 2.960176707 2.051402458 

18 Tc 90 43 948.1 10.43551628 1.24525198E-13 7.19621402 29.6045747 2.960457617 2.051596817 

19 Tc 91 43 653.0 10.94486181 8.558831137E-14 7.282460819 29.61648995 2.961468995 2.052422754 

20 Ru 91 44 393.7 10.49333122 4.401181043E-14 7.247696298 29.61170478 2.961170478 2.052091141 

21 Ru 97 44 215.7 10.83374358 1.858525668E-15 7.305774774 29.61968622 2.961968622 2.052644255 

22 Ru 105 44 724.3 11.27164584 6.054628017E-14 7.378506638 29.62959239 2.962959239 2.053330753 

23 Rh 92 45 893.0 10.55082935 1.183047718E-13 7.298493917 29.61868913 2.961868913 2.052575157 
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24 Rh 94 45 756.2 10.66489569 8.690209675E-14 7.318140675 29.62137741 2.962137741 2.052761454 

25 Rh 96 45 832.6 10.77775487 7.459737509E-14 7.337425015 29.62400908 2.962400908 2.052943829 

26 Rh 99 45 341.0 10.94486181 2.007528157E-14 7.365702458 29.62785554 2.962785554 2.053210389 

27 Pd 115 46 749.0 11.79618582 6.410311377E-14 7.542677371 29.6207549 2.965207549 2.054888832 

28 Pd 117 46 247.3 11.898831921 1.912999696E-14 7.56256872 29.65423203 2.965423203 2.055038279 

29 Ag 95 47 1261.2 10.72147378 1.636634412E-13 7.407924692 29.63357145 2.963357145 2.053606501 

30 Ag 99 47 342.6 10.94486181 1.238483053E-14 7.446213897 29.63872682 2.963472682 2.053963768 

31 Cd 100 48 936.6 11.0 1.177600316E-14 7.494919158 29.64524646 2.964524646 2.054415558 

32 Cd 105 48 961.8 11.27164584 1.350795682E-13 7.540768622 29.65134513 2.965134523 2.054838224 

33 In 104 49 658.0 11.21784293 2.834251644E-14 7.570678971 29.65530387 2.965530387 2.055112558 

34 In 106 49 632.6 11.32519316 8.797555554E-14 7.588726425 29.6576849 2.96576849 2.055277564 

35 Sn 105 50 1281.7 11.27164584 1.752461531E-13 7.618119947 29.66155073 2.966155073 2.055545466 

36 Sn 107 50 678.6 11.37848848 8.765512008E-14 7.63610896 29.66390929 2.966390929 2.055708914 

37 Sb 108 51 1205.

8 

11.43153533 1.312663862E-13 7.682934965 29.67002275 2.967002275 2.056132577 

38 Sb 112 51 1257.1 11.64130577 1.56548744E-13 7.717940754 29.6745687 2.96745687 2.056447611 

39 Te 113 52 814.0 11.69316039 1.056956365E13 7.72651097 29.67567851 2.967567851 2.056524521 

40 Te 115 52 770.4 11.79618582 4.364330965E-14 7.781166519 29.68272734 2.968272734 2.057013005 

41 I 112 53 689.0 11.64130577 9.308650113E-14 7.79251889 29.68418527 2.968418527 2.057114039 

42 I 114 53 708.8 11.74478608 5.380111373E-14 7.809778513 29.68639772 2.968639772 2.057267262 

43 Xe 135 54 786.9 12.78084504 2.235037334E-14 8.013953247 29.71220529 2.971220529 2.059055827 

44 Xe 140 54 805.6 13.01537552 3.471918209E-14 8.050467255 29.71675125 2.971675125 2.059370862 

45 Cs 116 55 393.5 11.84736258 1.361850705E-14 7.8995902 29.697832 2.9697832 2.058059134 

46 Cs 125 55 525.0 12.29837388 6.025788825E-14 7.973721585 29.70717245 2.970717245 2.05870705 

47 Ba 126 56 233.6 12.34746938 3.52479006E-15 8.01770307 29.7126731 2.97126731 2.05908824

6 

48 Ba 143 56 211.5 13.15405652 2.611548999E-14 8.145554522 29.72849344 2.972549344 2.060184595 

49 La 126 57 256.0 12.34746938 1.385883365E-14 8.053259166 29.71709799 2.971709799 2.059394591 

50 La 130 57 357.4 12.54192968 1.345828932E-14 7.533071049 29.65032392 2.965032392 2.05476744

8 

51 Ce 127 58 120.4 12.39637044 8.395409052E-15 7.305774775 29.61928622 2.961968622 2.052644255 

52 Ce 133 58 477.2 12.68581885 5.913636414E-14 7.378506684 29.62959239 2.962959239 2.053330752 

53 Pr 129 59 203.8 12.49359836 1.336215868E-14 7.2984939176 29.61868913 2.961868913 2.052575157 

54 Pr 137 59 836.9 12.8751699 9.989575466E-14 7.318140675 29.62137741 2.962137741 2.052761455 

55 Nd 133 60 402.8 12.68581885 4.24256549E-14 7.337425015 29.62400708 2.962400908 2.05293829 

56 Nd 152 60 278.6 13.56171081 2.377661113E-14 7.365702458 29.62785564 2.962785564 2.053210389 

57 Pm 136 61 373.7 12.82809417 3.375787571E-14 7.546278371 29.65207549 2.965207549 2.04888832 

58 Sm 137 62 380.5 12.8751699 2.911156154E-14 7.56256872 29.65423205 2.965423203 2.055638279 

59 Eu 139 63 719.0 12.96880873 5.423370161E-14 7.407924692 29.63357145 2.963357145 2.053606501 

60 Gd 159 64 363.0 13.87047223 4.792112304E-14 7.4462137979 29.63872782 2.963872728 2.053963758 

61 Tb 144 65 284.0 13.20 1.683888342E-14 8.462141713 29.76662342 2.976662342 2.062827003 

62 Dy 145 66 578.2 13.24575404 8.542809364E-14 8.501853707 29.77130541 2.977130534 2.06315146 

63 Ho 146 67 682.7 13.29135057 7.786581678E-14 8.541211008 29.77592392 2.977592392 2.063471528 

64 Er 151 68 1140.

2 

13.5770263 1.691899229E-14 8.609065064 29.78383684 2.978383684 2.06401989

3 

65 Tm 152 69 808.2 13.56171081 5.322432991E-14 8.647675105 29.78831163 2.978831163 2.06432999

6 

66 Yb 157 70 231.1 1379296049 2.291113539E-14 8.714021135 29.79595447 2.979595447 2.06485964

5 

 

𝑡1
2

=
𝐼𝑛 2

10−21𝐷𝑇
           57 

This equation gives the result for half-life of gamma emitting nucleus 

substitute equation (57) into (51) 
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𝑡1
2

=
𝐼𝑛 2

10−21
𝑒
−[42

𝑒2

ℏ2
(
𝑚

𝜋𝜖0
)𝑍
1
4𝑟0

1
4−

𝑒4

(ℏ𝜖0)
2(
𝑚

2
)𝑍2𝐸

−
1
4]

      58 

𝑡1
2

= 6.93 × 1021 × 𝑒
−[8.792420946×1015𝑍

1
4𝑟0

1
4−2.496984634×10−12𝑍2𝐸

−
1
4]

  59 

 

Table 2: 𝐾𝑟36
75

 to 𝑌𝑏70
157

  gamma particle emitting nuclei and their calculated and experimental half 

lives 

S/N Nucleus  

(name) 

Mass 

No. 

(A) 

Z       E 

 

𝛾(𝐽) 

     In DT 

(E12) 

 

     DT Log 

Decay 

constant 

Log 

Half-life  

𝑡1
2
 

Log 

Half-life  

𝑡1
2
 

(from chart) 

1 Kr 75 36 1.081469678E-14 6.728293536 29.53734267 -19.52962858 23.31110466 2.411619406 

2 Rb 76 37 3.97566408E-13 6.785920598 29.54587108 -19.529032 23.31123003 1.568201724 

3 Sr 80 38 2.146917582E-14 6.82001297 29.55088249 -19.52942955 23.31130369 3.804275767 

4 Y 80 39 4.524548695E-14 6.920046991 29.56544368 -19.5292156 23.31151764 0.6812412374 

5 Y 81 39 1.357044173E-14 6.930800892 29.56699649 -19.5219279 23.31110466 1.908485019 

6 Y 87 39 5.34005694E-14 6.992986692 29.5792886 -19.52901228 23.31167163 3.683407299 

7 Zr 80 40 5.12696736E-15 6.963896005 29.57177313 -19.52912263 23.3116106 0.6989700043 

8 Zr 85 40 2.552670702E-14 7.016960099 29.57935121 -19.52901136 23.31172188 1.037426498 

9 Zr 89 40 6.802844816E-14 7.056410711 29.58509935 -19.52892697 23.31180627 3.672910245 

10 Zr 90 40 5.609222727E-14 7.067274417 29.58649601 -19.58728819 23.31182677 2.907945522 

11 Nb 84 41 6.584948703E-14 6.995280444 29.57625182 -19.52905679 23.31167644 1.09181246 

12 Nb 86 41 1.02411173E-13 7.070740754 29.58698636 -19.52889927 23.31183397 1.942504106 

13 Nb 88 41 1.026354778E-13 7.09112895 29.58986568 -19.52885701 23.31187623 2.66464976 

14 Nb 89 41 2.285505918E-13 7.101111936 29.5912725 -19.52883836 23.31189688 3.857332496 

15 Mo 106 42 4.381954916E-14 7.30182856 29.51915492 -19.52842747 23.31230577 0.9395192526 

16 Mo 107 42 4.897856006E-14 7.310413426 29.62032094 -19.52841020 23.31232299 0.5440680444 

17 Tc 88 43 1.10742495E-13 7.176027451 29.60176707 -19.52868286 23.31205087 0806179974 

18 Tc 90 43 1.24525198E-13 7.19621402 29.6045747 -19.52864115 23.31209202 1.691965103 

19 Tc 91 43 8.558831137E-14 7.282460819 29.61648995 -19.528466 23.31226682 2.29666519 

20 Ru 91 44 4.401181043E-14 7.247696298 29.61170478 -19.52853659 23.31219665 2.346352974 

21 Ru 97 44 1.858525668E-15 7.305774774 29.61968622 -19.52841955 23.31231369 3.619260335 

22 Ru 105 44 6.054628017E-14 7.378506638 29.62959239 -19.52827432 23.31245891 4.203685471 

23 Rh 92 45 1.183047718E-13 7.298493917 29.61868913 -19.52843417 23.31229907 0.6989700043 

24 Rh 94 45 8.690209675E-14 7.318140675 29.62137741 -19.52839475 23.31233848 1.411619706 

25 Rh 96 45 7.459737509E-14 7.337425015 29.62400908 -19.52835617 23.31237707 1957128198 

26 Rh 99 45 2.007528157E-14 7.365702458 29.62785554 -19.52829978 23.31243345 4.228400359 

27 Pd 115 46 6.410311377E-14 7.542677371 29.6207549 -19.5279449 23.31278833 1.698970004 

28 Pd 117 46 1.912999696E-14 7.56256872 29.65423203 -19.5279132 23.31281992 0.6434526765 

29 Ag 95 47 1.636634412E-13 7.407924692 29.63357145 -19.528216 23.31251723 0.27875601 

30 Ag 99 47 1.238483053E-14 7.446213897 29.63872682 -19.52841047 23.31259278 1.041392685 

31 Cd 100 48 1.177600316E-14 7.494919158 29.64524646 -19.52804493 23.3126883 1691081492 

32 Cd 105 48 1.350795682E-13 7.540768622 29.65134513 -19.5279556 23.31277764 3.522444234 

33 In 104 49 2.834251644E-14 7.570678971 29.65530387 -19.52789762 23.31283561 2.035829825 

34 In 106 49 8.797555554E-14 7.588726425 29.6576849 -19.52786275 23.31287048 2.502427212 

35 Sn 105 50 1.752461531E-13 7.618119947 29.66155073 -19.52780615 23.31292709 1.531478197 

36 Sn 107 50 8.765512008E-14 7.63610896 29.66390929 -19.52777162 23.31296162 2.243534107 

37 Sb 108 51 1.312663862E-13 7.682934965 29.67002275 -19.5276212 23.31305111 0.8692317197 

38 B 112 51 1.56548744E-13 7.717940754 29.6745687 -19.52761558 23.31311765 1.1710963119 

39 Te 113 52 1.056956365E13 7.72651097 29.67567851 -19.52759934 23.31313389 2.008600172 

40 Te 115 52 4.364330965E-14 7.781166519 29.68272734 -19.5274962 23.31232704 2.604226053 

41 I 112 53 9.308650113E-14 7.79251889 29.68418527 -19.52747487 23.31325837 0.531478917 

42 I 114 53 5.380111373E-14 7.809778513 29.68639772 -19.5274425 23.31329074 0.7923916895 
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43 Xe 135 54 2.235037334E-14 8.013953247 29.71220529 -19.52706511 23.31366812 2.962842681 

44 Xe 140 54 3.471918209E-14 8.050467255 29.71675125 -19.52699867 23.31373456 1.133538908 

45 Cs 116 55 1.361850705E-14 7.8995902 29.697832 -19.52727559 23.31345785 0.84509804 

46 Cs 125 55 6.025788825E-14 7.973721585 29.70717245 -19.52713868 23.31354455 3.431363764 

47 Ba 126 56 3.52479006E-15 8.01770307 29.7126731 -19.52705828 23.31367496 3.773786445 

48 Ba 143 56 2.611548999E-14 8.145554522 29.72849344 -19.5268271 23.31390614 1.155336037 

49 La 126 57 1.385883365E-14 8.053259166 29.71709799 -19.5269936 23.31373963 1.698970004 

50 La 130 57 1.345828932E-14 7.533071049 29.65032392 -19.52797056 23.31276268 2.717670503 

51 Ce 127 58 8.395409052E-15 7.305774775 29.61928622 -19.52841955 23.31231369 1.531478917 

52 Ce 133 58 5.913636414E-14 7.378506684 29.62959239 -19.52827432 23.31245891 2.51054501 

53 Pr 129 59 1.336215868E-14 7.2984939176 29.61868913 -19.52843417 23.31229907 1.477121255 

54 Pr 137 59 9.989575466E-14 7.318140675 29.62137741 -19.52839475 23.31233843 1.88536122 

55 Nd 133 60 4.24256549E-14 7.337425015 29.62400708 -19.52835617 23.31237589 1.84509804 

56 Nd 152 60 2.377661113E-14 7.365702458 29.62785564 -19.52829978 23.31243345 2.835056102 

57 Pm 136 61 3.375787571E-14 7.546278371 29.65207549 -19.5279449 23.31278833 1.672097858 

58 Sm 137 62 2.911156154E-14 7.56256872 29.65423205 -19.52791332 23.3129467 1.653212514 

59 Eu 139 63 5.423370161E-14 7.407924692 29.63357145 -19.528216 23.31251723 1.255272505 

60 Gd 159 64 4.792112304E-14 7.4462137979 29.63872782 -19.52814044 23.31251275 3.045322979 

61 Tb 144 65 1.683888342E-14 8.462141713 29.76662342 -19.52627043 23.31446281 0.6232492904 

62 dy 145 66 8.542809364E-14 8.501853707 29.77130541 -19.52620212 23.31453111 1.146128036 

63 Ho 146 67 7.786581678E-14 8.541211008 29.77592392 -19.526123475 23.31489848 0.5785139399 

64 Er 151 68 1.691899229E-14 8.609065064 29.78383684 -19.526019366 23.31471388 0.7781512504 

65 Tm 152 69 5.322432991E-14 8.647675105 29.78831163 -19.52595411 23.31477912 0.6989700043 

66 Yb 157 70 2.291113539E-14 8.714021135 29.79595447 -19.5258427 23.31489054 1.5910064607 

 

Discussion 

The results of tunneling probabilities of gamma particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  

nuclei are shown in Tables 1 and 2. Table 1 and 2 have atomic number Z = 36 

to 70 for  𝐾𝑟36
75

 to 𝑌𝑏70
157

 gamma nuclei. The tables that indicate the medium 

gamma particle has an appropriate result obtained which shows that gamma 

decay is possible. The calculated tunnel probability in equation (4.8) indicate 

input data in Table 2. The isotopes of gamma particle emitter with Z = 36 to 

70 that is 𝐾𝑟36
75 − 𝑌𝑏70

157
 for medium gamma particle and Z = 71 to 101 that is 

𝐿𝑢71
158 − 𝑀𝑑101

256
  for heavy gamma particle are shown. The half-life varies from 

one nucleus to another which indicates that from Table 2 observes that the 

values of calculated half-lives are so small but also match with the 

experimental half-lives. In general, the gamma particle half-life 𝑡1
2

 presented in 

the Table 2 are in agreement with the experimental result (see chart of 

Nuclides Edwards et al., 2002). 
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Figure 1: Natural logarithm of Tunneling probability versus Atomic number 

for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  Gamma Particle emitting nuclei. 

 

Figure 1 represents the natural logarithm of tunneling probability versus 

atomic number Z for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass gamma particle emitters 

respectively. Figure 1, the anomaly lies with high atomic number Z values for 

the medium gamma particle nuclei. From atomic number Z= 42, 44, 46, 48, 52, 

54 and 56 are slightly high than the orders also from atomic number Z= 57 to 

65 makes a shape of “ w” and from the atomic number Z= 65 diminishes with 
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 increasing value of natural logarithm of tunneling probability. The reason that 

anomaly lies at low atomic number Z is as result of different energy of gamma 

particle emitters with atomic number Z. The shape “w” is as a result from one 

nucleus to another, that the nuclei have either very small tunneling probability 

or the nuclei are stable and are depicted by points lying at the bottom for each 

isotope which even-even is with even-odd (even neutron and odd proton or even 

proton and odd neutron) the figure shows that the probability of gamma 

emission is higher than even-even nuclei. The atomic number Z= 42, 44, 46, 

52, 54 and 56 it shows that even-even nuclei have the slightly high probability 

of gamma emission. 

 

 

Figure 2: Logarithmic plot of Experimental and Calculated Half-lives versus 

Energy of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. 

 

Figure 2 shows the logarithm of experimental and calculated half-lives versus 

energy of gamma particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. Figure 2, shows the 

anomaly lies with high energy of gamma particle values of experimental and 
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calculated half-lives except for the three anomalies nuclei of the experimental 

half-lives that are high energy of gamma particle emitter prove that they have 

high half-lives experimentally as in the anomalies of the energy of gamma 

particle are 4.90 E-14 J, 7.46 E-14 J and 1.18 E-14 J. 

 

 

 

Figure 3: Logarithmic plot of Calculated and Experimental Half-lives versus 

Atomic Number for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. 

 

Figure 3 shows the logarithmic calculated and experimental half-lives versus 

Mass number A for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei respectively. 

Figure 3 shows the anomaly lays with high mass number A values for the 

medium mass number A nuclei sustain a straight line of the value of calculated 
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 and experimental half-lives except for the three anomaly of the experimental 

half-lives that are high that is for the isotopes of the nuclei with mass number 

A = 94 to 99. These reveal that those low mass number A have a low rate of 

calculated and experimental half-lives while the three mass number A 

indicates that they have high experimental half-lives. 

   

 

 

Figure 4: Logarithmic plot of Calculated and Experimental Half-lives versus 

Mass Number (A) of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  Mass Nuclei. 

 

Figure 4 shows the logarithm of experimental and calculated half-lives versus 

mass number of gamma particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. Figure 4, 

indicates the anomaly lies with low mass number of gamma particle values of 

experimental and calculated half-lives except for the three anomalies nuclei of 

the experimental half-lives that are high mass number of gamma particle either 
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prove that they have high half-lives experimental as in the anomalies of the 

mass number of gamma particle are 90, 99 and 101. 

 

 

 

 

Figure 5: Logarithmic plot of Calculated and Experimental Decay constant 

versus Energy (J) of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  Mass Nuclei. 

 

 

Figure 5 represents the logarithm calculated decay constant versus Energy (J) 

for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass gamma particle emitters respectively. Figure 5, the 

anomaly lays with low Energy (J) values for the medium gamma particles 

emitting nuclei. for the Energy (J) value of 0.00 is having a vertical line on the 

logarithm calculated decay constant from 0.00 to around -3.5 which also the 

figure it has a shape if cone on the position of neutral equilibrium. The cone 
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 neutral equilibrium position lies on the low Energy (J) than the order vertical 

line. The figure also shows a horizontal line on the Energy (J) from 0.00E+00 

to 1.00E+13 

 

 

Figure 6: Logarithmic plot of Calculated and Experimental Decay constant 

versus Atomic Number (Z) of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  Mass 

Nuclei. 

 

Figure 6 shows the logarithm of calculated and experimental decay constant 

versus atomic number (z) of gamma particles for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei.  

Figure 6, shows the anomaly lies with low atomic number (Z) 0f gamma 

particle values of calculated and experimental decay constant for the medium 

gamma particle nuclei. The figure shows a zigzag and horizontal line. For the 

zigzag value on atomic number (Z) = 40 has the lowest value on the zigzag 

while from the atomic number (Z) = 60 to 70 it diminishes. 
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Figure 7: Logarithmic plot of Calculated and Experimental Decay constant 

versus Mass Number (A) of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  Mass 

Nuclei. 

 

Figure 7 shows the logarithm of calculated and experimental decay constant 

versus mass number (A) of gamma particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. 

Figure 7, shows the anomaly lies with low mass number (A) values for the 

medium gamma particle nuclei. It shows the shapes of cones and a horizontal 

line. The shapes of cones are like in the position of neutral and also unstable 

equilibrium. The shapes lie in between mass number (A) = 71-160. 
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Figure 8: Natural logarithm of Tunneling probability versus Energy (J) for  

𝐾𝑟36
75

 to 𝑌𝑏70
157

  Gamma Particle emitting nuclei. 

 

Figure 8 represent the natural logarithm of tunneling probability versus Energy 

(J) for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass Gamma particle emitters respectively. 

Figure 8, the anomaly lie with high Energy (J) values for the medium Gamma 

particle emitting nuclei. From natural logarithms of tunneling probability axis 

that lies 0.00 E+00 on Energy (J) axis while from two different points that 

meet at a point that make a narrow space between the two point from the at a 

distance less than 5.00 E+12 Energy (J) it continuous up to a distance above 

1.00 E+13. These means that the nuclides that Energy (J) to tunnel through the 

Double thick barrier, the Energy of the nuclides that have 0.00 E+00 lies in 

between a distance close to 7.00 E+12 to distance close to 9.00 E+12 and the 

two points are close 8.00 E+12 of the natural logarithm of the tunneling 

probability. 
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Figure 9: Logarithmic plot of Calculated Half-lives versus Atomic Number 

(Z) of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. 

 

Figure 9 represents the logarithms of calculated half-life verses Atomic 

number Z for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass Gamma particle respectively. Figure 9, the 

anomaly lies with high atomic number Z value for the medium gamma particle 

emitting nuclei. From atomic number Z = 42, 44, 46, 48, 52,54 and 56 are 

slightly high than the orders also from atomic number Z = 57 to 65 makes a 

shape of w and from the atomic Z = 65 diminishes with increasing value of 

natural logarithm of tunneling probability. The reason that anomaly lies at low 

atomic number Z is as a result of different logarithms of calculated half-life. 

The shape w is as a result of a different time of tunneling to the other, that the 

nuclei have either very small time tunneling probability or the nuclei are stable 

are depicted by points lying at the bottom for each isotopes which even-even 

is with even-old (even number and odd proton or even proton and odd neutron) 

the figure shows that the time taken for the probability of gamma emission is 

high than even-even nuclei. The atomic number Z = 42, 44, 46, 48, 52,54 and 

56 it shows that even-even nuclei have the slit high logarithms of calculated 

half-life of gamma emission. 
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Figure 10: Logarithmic plot of Calculated Half-life versus Mass Number (J) 

for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. 

 

Figure 10 represents the logarithms of calculated half-life versus mass number 

(A) for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass Gamma particle emitters respectively. 

 

Figure 10, the anomaly lies with high mass number (A) values for the medium 

gamma particle emitting nuclei. The figure shows the shape of v, zigzag shape 

in the ascending order and also a shape of w. The reason for the shape of v is 

as a result of low in logarithms of calculated half-life taken for tunneling 

probability, zigzag shape is as a result of different value of logarithm of 

calculated half-life which is not at a close distance and also shape w is as a 

result from one nucleus to another of the logarithm half-life for the tunneling 

probability. 
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Figure  11: Logarithmic plot of Calculated Decay Constant versus Atomic 

Number (Z) of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei.  

 

 

Figure 11 represents the logarithms calculated Decay constant versus atomic 

number Z  for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass Gamma particle emitters respectively. 

 

Figure 11, the anomaly lies with low atomic number Z values for the medium 

gamma particle emitting nuclei. For the atomic number Z = 39 slightly high 

than the orders, also for atomic number Z = 40 is lower than the orders from 

atomic number Z = 57 to 65 makes a shape of w and also from atomic number 

Z = 65 diminishes with increasing value of logarithms of calculated decay 

constant. This shows that atomic number Z = 39 having a high logarithms 

calculated decay constant than order after the tunneling probability. 
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Figure 12: Logarithmic plot of Calculated Decay Constant versus Mass 

Number (A) of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. 

 

Figure 12 represents the logarithm decay constant versus mass number (A) for  

𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass Gamma particle emitters respectively. 

Figure 12, the anomaly lies with low mass number (A) values for the medium 

gamma particle nuclei. The figure shows a shape of a cone, shape of an upside 

down cone, closed distance zigzag and also a shape of letter S. The reason for 

the shape of a cone is one of the mass number (A) have lower logarithm decay 

constant value than the orders, for the upside down cone is as the result of the 

middle valve of mass number (A) is having a high value of logarithm decay 

constant than orders, closed distance zigzag shape is as a result of fluctuation 

of values of logarithm decay constant at a closed distance and also for the 

shape of letter “S” is as a result of fluctuation of values of logarithm decay 

constant at a distance after the tunneling probability. 
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Figure 13: Logarithmic plot of Calculated Half-life versus Energy (J) of 

Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. 

 

Figure 13 represents the logarithm calculated Half-life versus Energy (J) for  

𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass Gamma particle emitters respectively. Figure 13, the 

anomaly lies with high Energy (J) values for the medium gamma particle 

emitting nuclei. For the Energy (J) value 0.00 E+00 is having a vertical line on 

the logarithm calculated half-life from above 23.311 seconds to close to 23.315 

seconds and also a shape of cone on the position of neutral equilibrium. The 

cone neutral equilibrium position lies on the higher Energy (J) than the order 

vertical line. The cone lies in between close to 23.3125 seconds to above 23.313 

seconds of logarithm calculated half-life that is taken to tunneling probability. 
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Figure 14: Logarithmic plot of Calculated Decay Constant versus Energy (J) 

of Gamma Particle for  𝐾𝑟36
75

 to 𝑌𝑏70
157

  mass nuclei. 

 

Figure 14 represents the logarithm calculated decay versus Energy (J) for  𝐾𝑟36
75

 

to 𝑌𝑏70
157

  mass Gamma particle emitters respectively. Figure 14, the anomaly 

lies with low Energy (J) values for the medium gamma particle emitting nuclei. 

The figure shows the vertical and horizontal lines. The values of Energy (J) at 

0.00 E+00 is having vertical line on the logarithm of calculated decay which 

lies below -19.52 to above -19.58, the horizontal lines is as a result of the Energy 

(J) that have 1.00 E+13 that is after the tunneling probability. 

 

CONCLUSION 

It has been calculated analytically the quantum mechanical emission 

probability of barrier penetration  𝐾𝑟36
75

 to 𝑌𝑏70
157

 of the gamma particle decay 

of atomic nuclei. The Schrӧdinger’s time-independent equation has been 

applied to a potential barrier whose height is greater than the gamma particle’s 

energy. However, on application of barrier emission theory, the probability of 

the gamma particle crossing the barrier is in non-zero and this probability has 

been calculated.      
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