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ABSTRACT

This work is about seasonal autoregressive integrated moving average (SARIMA)
modeling of monthly rainfall of Rivers State of Nigeria from 1981 to 2016. The time plot
shows seasonality of period 12 months as typical of rainfall data. Even though the
Augmented Dickey Fuller test of unit root ceritifies the series as stationary the
correlogram shows an undulating sinusoidal pattern of seasonality of period 12, as
expected. The correlogram shows positive spikes at lag 12 and comparable spikes at the
autocorrelation function (ACF) at lags 11 and 13 and spikes at lags 12 and 24 on the partial
autocorrelation function (PACE). This suggests the involvement of a seasonal
autoregressive order of 1 or 2 and a moving average non-seasonal order of 1 and a seasonal
order of 1. This means the involvement of a SARIMA0,0,1)x(1,1,1),, model. Other models
worth testing are SARIMA (0,0,1)x(2,1,1),, model and a SARIMA(1,0,1)x(0,1,1),, model. By
AIC and R’ the lattest model was chosen. The correlogram of the residuals showed no
significant spike, an evidence of model adequacy. The forecasts of 2017 were obtained
finally.
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INTRODUCTION AND LITERATURE REVIEW

Rivers State is one of the six states in the Niger Delta of the South South of
Nigeria. The major occupation of dwellers of this state is agriculture (fishing
and farming). The major livelihood of this people is rain dependent. The state
would have benefited more in agriculture if farmers had access to reliable and
efficient timely rainfall forecasts like these ones obtained here. This study
would also benefit other sectors in the state that depend on reliable forecasts
of climatic conditions such as tourism and industries. Data covering from
1981 to 2016 were obtained for this study. So many works have been done by
different researchers on rainfall.

Chonge er al. (2015) used general autoregressive integrated moving average

(ARIMA] family to fit a time series model to rainfall pattern in Uasin
Gishu County of Kenya. Their result was that a SARIMA(0,0,0)x(0,1,2).,
best fitted the Kapsoya historical rainfall data. Inderjeet and Sabita (2008)
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employed seasonal ARIMA model for prediction of temperature and rainfall
on monthly scales for the state of Uttar Pradesh of India. They used periodic
data to formulate the SARIMA model and in determination of model
parameters. | he performance evaluation of the model was carried out on the
basis of correlation coefficient (R*) and Root Mean Square Error (RMSE).
Their result showed that the SARIMA approach provided reliable and
satisfactory predictions for rainfall and temperature parameters on monthly
scale.

Cowden er al. (2010) examined stochastic rainfall modeling in West Africa.

They examined two stochastic rainfall models: Markov Models [MMs) and
Large Scale Weakening (LARSWG). A first order Markov occurrence model
with mixed with mixed exponential amount was selected as the best option
for unconditional Markov models. They concluded that there was no clear
advantage in selecting Markov models over the LARSWG model for
Domestic Rainfall in West Africa.

Farajzadeh er al. (2012) assessed the modeling of monthly rainfall and run off
of Urimia Lake Basin of lran using Feed-Forward Network (FENN/ and
Time Series Analysis Models [TSAM). They applied an ARIMA model to
forecast the monthly rainfall in Urimia Basin and found that the estimated
values of monthly rainfall through Feed-Forward Neural Network were close
to ARIMA model with coefficient of correlation 0.62 and the Root Mean
Square Error (RMSE) of 12.43.

Bari er al. (2015) built a SARIMA model using Box and Jenkins a(1976)
method to forecast long-term rainfall ion Syihet City in Bangladesh. The
used rainfall data from 1980-2010 of Syihet Station to build and check the
model. The rainfall data from 1980-2006 were used to develop the model while
the data from 2007-2010 were used for checking and forecasting. Their result
showed that SARIMA(0,0,1)x(1,1,1), was found most effective to predict
future precipitation with 95% confidence interval. Jabrin er al (2014)
employed a SARIMA method to model and forecast rainfall pattern in Kano
State, Nigeria. From their findings, the method of estimation and the model
diagnostic revealed that the SARIMA/(o0,0,0)x(111),, adequately fitted the
data.
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Ogunrinde (2012) also used Box-Jenkins methodology to build a SARIMA
model for time series of rainfall of Lagos State and also used SARIMA
(2,0,0] model in applying time series to model rainfall in Maiduguri, North
Eastern Nigeria. After some diagnostic tests, he found that an SARIMA
(1,1,0) model provided a good fit for the rainfall data of Maiduguri and also
found that the model was appropriate for the short-term forecast. Eni and
Adeyeye (2015) worked on rainfall data from Warri town in Nigeria. They
found that the model SARIMA (1,1,1)x(0,1,1),, was adequate after meeting the
criterion of model parsimony with the Residual Sum of Squares (RS5S) value
of 81.098, Akaike’s Information Criterion (AIC) of 281 and Schwartz’s
Bayesian Criterion (SBC) value of 281.

MATERIALS AND METHOD

Data:

The data for this work are from 2018 Statistical Bulletin_Real Sector, page
cs.1, from the Central Bank of Nigeria website www.cbn.org .

Sarima Modelling

Let {X.} be a time series. Suppose that it is stationary. It is said to follow an
autoregressive moving average model of order p and q (denoted by ARMA [p,
q)) if it satisfies the following equation

Xe - o Xt auXe, + o0+ o Xep = & + Beat PBr €at... + By &g

where the a’s and [’s are constants such that (1) be both stationary and
invertible and {&.} is a white noise process.
Equation (1) may as well be written as

A(L)X, = B(L)e.

where AlL) =1-a,L-a,l*-...-a,Pand B(L) =1+ B,L + B, + ... + B,L°
and L is the backshift operator defined by L*X, = X.

If {X.} is not stationary according to Box and Jenkins (1976, 2004), a certain
difference of {X.}, V¢(X,, might be, where V.= 1 =L and d is a positive
integer. Then if {X.} is replaced by V¢(X, in (1), the model becomes an
autoregressive integrated moving average of order p, d, q, denoted by an

ARIMA(p, d, q), in {X}. If the series is seasonal of period s, it is said to
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follow a seasonal autoregressive integrated moving average model of order (p,
d, q)x(P, D, Q) (denoted by a SARIMA(p ,d, q)x(P, D, QJs) if
Al(L)D(L) vayp X = B(L)®(L%)e,

where ®(L°) = 1-¢,L°-¢,L*- ... -ppL™and O(L*) =1+ 6, L+ 0, >+ ... +
0,L% and V2 is the seasonal difference operator such that Vg = 1-L°. Here P
is the seasonal autoregressive order; QQ is the seasonal moving average order;
the ¢’s and the 0’s are the seasonal autoregressive and the seasonal moving
average parameters.

In practice, an autoregressive component of lag p is identified when the ACF
cuts off at lag p and a moving average component of order q when the partial
autocorrelation function cuts off at lag q. Stationarity of a time series is
assured if the Augmented Dickey Fuller (ADF) unit root test is significant.

Computer Software
Eviews 10 shall be used throughout this work. |t is based on the maximum
likelihood estimation procedure.

RESULTS AND DISCUSSION

The time plot of Figure 1 is typical of rainfall data as it shows seasonality of
period 12 months, with the peaks around the middle of the year and the
troughs around the end of the year and with no noticeable secular trend. The
Augmented Dickey Fuller (ADF) unit root test of Table 1 gives an
impression that the series is | (0] i.e. stationary. However the correlogram of
Figure 2 shows a sinusoidal pattern of period 12 months with peaks at
multiples of 12 [ags and the troughs midway between the peaks. This shows
clearly that the series is seasonal of period 12 months and no seasonal data is
stationary.

A seasonal (i.e. 12 monthly) differencing is done to rid the series of the
seasonality and make it stationary as evidenced by the ADF test of Table 2.
The time plot of Figure 3 shows the differenced series devoid of any
seasonality and trend. The correlogram of the differenced series of Figure 4
shows positive spikes at lag 12 and comparative spikes at lags 11 and 13 in the
ACE. This indicates a seasonal moving average component with a non-
seasonal component of order one and a seasonal component of order one. The
PACEF has spikes at lags 12 and 24 indicating a seasonal autoregressive
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component of order 2. Therefore the models entertained are as given in Table
3 and their AlCs and R¥s. Based on Table 3 data, the model chosen was the

SARIMA(1,0,1)x(0,1,1),, model given in Table 4 by

V. X, = -0.8810V,, X, + 0.8890¢&., — 0.9867¢.,, — 0.9024€.,; + €, 0
............................................................................................. (4)
where X,is the monthly rainfall data in Rivers State at time t. This model (4)
is certified adequate by the correlogram of its residuals if Figure 5. All spikes
are within 95% confidence [imits.

Table 5 gives forecasts of 2017 based on model (4).
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Figure 1: Time Plot of monthly rainfall in Rivers State
Tabler: Augmented Dickey Fuller Test of the original data
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Mull Hypothesis: MRRS has a unit root
Exogenous: Constant

Lag Length: 11 (Automatic - based on SIC, maxlag=17)

t-Statistic Prob.*

Augmenied Dickey-Fuller test statistic -5.276489 0.0000
Test critical values: 1% level -3 446201

5% level -2 B63422

10% level -2 570501
*Mackinnon (19296) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Wariable: DIMRERS)
Method: Least Squares
Date: 091020 Time: 05:09
Sample (adjusted): 1982M01 2016M12
Included observations: 407 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

MRRS(-1) -1.031597 0.195508 -5 276489 0.0000
DiIMRRS{-1)) 0 225089 0.1846110 1.219268 0.2235
D{MRRS(-2)) 0215842 0170521 1.265776 02063
D{MRRS(-3)) 0110208 0.1556328 0708105 0.4793
DIMRRS(-4)) 0.073402 0.128639 0.529448 0.5968
DiMRRS({-5)) -0.016387 0122085 -0.1324228 0.8933
DiIMRRS({-6)) -0.147100 0106696 -1.378676 0.1688
D{MRRS(-7)) -0.278985 0.093303 -2.990095 0.0030
D{MRRS(-8)) -0.379518 0.081496 -4 656888 0.0000
D{MRRS(-9)) -0.378797 0070081 -5.405114 0.0000
DIMRRS(-10)) -0.289018 0060151 -6. 467341 0.0000
DIMRRS(-11)) -0.243285 0.048991 -4 965894 0.0000

[ 195 8641 A7 44266 5.231040 0.0000

R-=z=quared 0.5237182 Mean dependentwvar 0452334

Adjusted R-squared 0.523087 S.D. dependentwvar 131.8211

S E. ofregression 91.034132 Akaike info criterion 11.89177

Sum souared resic APARRARY Schwars criterion 12 01981

Autocorrelation Fartial Correlation A Pauc C-Stat FProb

[ S— [ — 1 0525 0525 1482282 0000
LI | o 2 0.292 -0.0F75 18535 0.000
i s ] 2 -0.044 -0.2830 18620 0.000

 m—  m— 4 —0.2Z20 -0.262 23I0.94 0.000
| — o 5 -0.5471 -0.312 35902 0.000
| — s ] 5 -0.625 -0.288 531.00 0000
| — o | 7 0553 0233 66576 0000

 m— = 8 -0.228 -0.1383 F132.35 0.000

N 3 N 9 —0.012 -0.022 71242 0.000
|1 — il 10 0297 0048 75249 0.000
[ S— 1 = 11 0551 0184 89214 0.000
[ S— 1 = 12 0672 0222 109232 0.000
[ S— il 13 0.540 0053 12237 0.000
LI | [ N 14 0277 0015 12521 0.000
(NN 1l 15 -0.005 0038 1253.1 0.000

 m— = N 16 -0.323 -0.084 13050 0000
| — = 17 0557 0125 ‘1444 8 0.000
| — o 18 -0.626 -0.071 1621.8 0.000
| — 1 19 0512 0006 “17F41.1 0.000

| o [ ! 20 -0 3279 -0 127 17F90.2 0000

i = 241 -0.048 -0.123 1791.2 0.000

LI | [ N 22 02732 0024 18253 0.000

[ S— =] 23 0.553 00835 195653 0.000

|1 S— ] 24 06554 0081 2151.5 0.000

[N E— 8 N 25 0524 -0 019 2287 F 0000

[ — il 26 0.307 0054 2331.0 0.000

i o 27 0021 -0.053 23221.2 0.000

o | 1 28 -0.294 0005 2Z23271.2 0.000

| — [ N 29 -0.524 -0.025 24986 0.000
| — i 20 -0.509 —0.052 2671.1 0.000
| — o 21 -0.539 -0072 23065 0.000
s 1l 22 0298 0040 28421 0000
i [ N 323 -0.018 -0.014 284532 0.000

[ — 1l 24 0.3211 0036 285935 0.000

[ S— 1 25 0.544 0024 20222 0.000

|1 S— [ | 26 0665 0163 322422 0.000

Figure 2: Correlogram of the original data
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Table 2: Augmented Dickey Fuller Test for the seasonal difference

Mull Hypothesis: SDMRRS has a unit root

Exogenous: Constant

Lag Length: 11 {Automatic - based on SIC, maxlag=17)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -83.526865 00000
Test critical values: 1% level -2.44T7214
5% level -2 868868
10% lewvel -2.570740
*Mackinnon (1995) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SOMRRS)
Method: Least Squares
Drate: 09907620 Time: 11:09
Sample (adjusted): 1983M01 201 6M12
Included observations: 283 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
SDMRRS(-1) -1.2532184 0.146969 -8.526865 0.0000
D(SDMRRS(-1)) 0.2023210 0.141999 2128963 0.03329
DISDMRRS(-2)) 0.226841 0137104 2.383895 0.0176
DSDMRRS(-2)) 0.284667 0131701 2161467 0.03132
D(SDMRRS(-4)) 0.215205 0.124209 2. 538494 0.0115
DISDMRRS(-5)) 0.353153 0116228 2.0328455 0.0025
DISDMRRS(-6)) 0.2384127 0108228 23.549223 0.0004
D{SDMRRS(-T) 0.358746 0.099261 3614181 0.0003
D(SDMRRS(-8)) 0.378206 0.088435 4 2TFTTFTET 0.0000
D(SDMRRS(-9)) 0453176 0.075204 6.025981 0.0000
DHEDMRRS(-10)) 0.491519 0.062616 7.849689 0.0000
CHSDMRRS(-11)) 0.490201 0.045233 10.60280 0.0000
c 0.2243285 51532264 0.0432542 0.95532
R-squared 0.605770 Mean dependent var 0037337
Adjusted R-squared 0.592984 S.D. dependentwvar 157.9331
S.E. of regression 1007578 Akaike info criterion 12.09667
Sum squared resid 3756292, Schwarz criterion 1222068
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Autocorrelation Partial Correlation A P - =tat Prokb
1 L ] 1 o052 D052 1. 292497 O.1532
LN Tyt =2 0002 -0.0132 1.29770 0.272
= = ) 2 0115 -0.114 T. 5865632 D055
Tm T A4 0043 O.059 2. 26522 D.0O7F9
1 1 L= o070 O.052 10420 o054
[N B} 1 (=] 0024 o002 10.679 O.099
g g TO-00E1 00532 12 290 O.091
ft L ) =2 0070 o011 12335 o127
1|3 Ly | 9 o117 o171 18252 o022
m L ) 10 o058 o.0z23 19.686 o032z
11 (i 11 -0.0Z24 -0.020 19. 940 O.046

| I— ] | — ) 12 -0.4817 -0.464 1192.82 o000
i T 13 -0.040 O.0Z6 120 .58 o000
o [ 14 —0.067 -0.095 122 52 o000
1 i 15 0075 -0.003 125.17F o000
g g 16 0055 -0.025 126.653 o000
g g 1T 0055 -0.026 128.45 o000
[N L B 18 0022 0013 12870 o000
A T 19 o092 D.059 13238 o000
g o 20 0052 -0.077F 133 .57 o000
= Tyt =1 -0.105 -0.017F 135.49 o000
= g 22 0111 -0.059 1432 .95 o000
LN Tyt 23 —-0.005 -0.009 143=. 99 o000
g | m— 24 0051 -0.354 145 .15 O oo0D
g o 25 -0.057 -0.072 145G.51 O oo0D
A T =5 0057 o045 149 97 O oo0D
LN L} L ] =7 O.0=z9 o051 150.54 O oo0D
A T =5 o095 oO.059 154 .92 O oo0D
[N g Z9 -0.012 -0.0325 154 .98 o000
g Tyt 20 0028 -0.021 155 .54 o000
g L ] 21 -0.0Z27 o007 F 156.24 o000
A L B 22 o008 o012 159.76 o000
LN L} g 33 o025 0045 150.05 o000
A i =24 0O.093z Lo R B 154032 o o000
1 LN 25 0004 0011 154032 o o000

Figure 4: Correlogram of t

he seasonal difference

Table 3: Statistics of two suggested models

SARIMA Model AlC R-Squared
SARIMAo,0.1)(1,1,1),, 11.71313 0.498724
SARIMAI(1,0,1)(0, 1,1),, I1.7122§ 0.512513
SARIMAo,0,1)(2,1,1),, 11.71571 0.496031
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Table 4: Estimation of the SARIMA(1,0,1)x(0,1,1),, model

Dependent Variable: SDMRRS

Method: ARMA Maximum Likelihood (OPG - BHHH)

Drate: 09/08/20 Time: 05:32
Sample: 1982M01 2016M12
Included ocbservations: 418

Failure to improve cbjective (non-Zzero gradients ) after 22 iterations
Coefficient covariance computed using outer product of gradients

YWariable Coeflicient Std. Error t-Statistic Prokb
AR -0.881035 0137660 -6 400094 0. 0000
ARC1Z2) -0.031717 0.029994 -0. 793054 0. 4282
AL ) 0.22890326 0122649 5.702126 Q.0000
MALT2) -0.986653 0047710 -20. 68014 Q.0000
MALT3) -0.902282 0136847 -6.594117 0.0000
SIGMASCY 6272 387 1325353 4. TF3I2616 00000
R-squared 0512513 Mean dependent var -0 22THAZ2
Adjusted R-squared 0.506596 =.D. dependent var 112.59677
S.E. of regression TOFT200 Akaike info criterion 11.71225
Sum squared resid 2621858 Schwarz criterion 1177017
Log likelihood -2441 860 Hannan-Ciuinn criter. 11.73515
Durbin-YWatson stat 1.9449373
Inverted AR Roots B8+ 19 B8-.19i Ag- 52 Ag+ 52
i S ] 14700 -.25-.69i - 25+.69i
- 61+.48i - 61-.48i -B88-12i -88+12i
Inverted MA Roots .00 BY-50i1 BT+ 500 B0+ 87i
B0-87i 001000 001004 -50+.87i
- 50-.87i - 86+.50i -.B6-.50i -.94
-.9a7
Autocorrelation Fartial Correlation S Paac D-Stat FProkb
(i (i 1 D027 D027 0. 3101 0.578
i 1 2 -0.0329 -0.040 09542 0621
o o 2 -0.075 -0.072 323127 0.3246
(i (i 4 0035 D037 2.8217 04321
(il (i 5 0042 D024 4. 5581 0,472
(i N I 5 o029 D024 4. 9126 0. 555
i o T 00111 -0.005 4. 9582 0554
o o 8 -0.003 D004 4. 9712 0.7E1
(i (i =] 0,039 0040 5.6392 0775
[ i i 10 -0.0711 -0.018 S.6906 0.8541
8 N (NN 11 -0.009 -0.007 S 7276 0.291
o o 12 -0.002 D003 5. 7302 0,929
g g 12 -0.0585 -0.062 F.A11326 D.296
g g 14 0050 —-0.051 2.2057 (W= =
(i (i 15 D035 D024 87434 0.891
o B 16 0004 0008 5. 7439 D923
g g 17 -0.059 -0.061 10.295 o591
B T 18 -0.004 00770 10204 0922
Wil s ] 12 0.064 0062 12132 0.230
o g 20 -0.03232 -0.046 12,6802 0,294
O [(m ] 21 -0.0892 -0.089 16 461 0. 743
O g 22 -0.084 0054 19.504 0,608
o o 232 0,002 -0.004 196506 D666
o (n ] 24 -0.040 -0.070 20.316 0.679
g g 25 -0.055 -0.064 21.729 0,551
il s ] 256 0054 0075 23044 0630
1] 8 1 2¥ 0022 0022 23 5329 0.656
(il (] b= 0056 0051 24 956 0.620
o (i 29 D006 D024 24,971 D580
i B 20 -0.021 —-0.009 25175 O.7F16
o g 31 -0.037 -0.029 25789 0. 721
(i (i 32 D036 D035 256.374 0.747
o B 32 -0.005 -0.011 256. 3806 0. 786
il 3 1 34 0045 0020 27.328 0784
| | 35 0024 0005 27V 5231  0.210

Figure s:

Correlogram of the resid

uals of the SARIMA(1,0,1)X(0,1,1),, model
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Table 5: 2017 forecasts

Time Forecast
January 2017 18.4
February 2017 60.9
March 2017 I12.0
April 2017 162.7
May 2017 249.2
June 2017 305.7
July 2017 332.4
August 2017 330.8
September 2017 | 355.9
October 2017 256.2
November 2017 | 82.3
December 2017 | 30.9
January 2018 17.5
CONCLUSION

The model (4) gives an adequate representation of the data. By it forecasts
have been made for the year 2017 and January 2018. Planning may be done on
its basis by agriculturists, tourists, planners and administrators. We
recommend that further research could focus on investigating the
effectiveness of the fitted SARIMA model by comparing it to weather
conditions of other states which were not considered in this work.
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