AN ASSESSMENT OF UNEQUAL MASSES OF ATOMS MOVING IN GEOMETRY OF TWO COMPONENT FERMION SYSTEM

1E. W. Likta, 2M. A. Abdul Agee and ${ }^{3}$ M. F. Hague
Department of Physics, University of Maiduguri, P.M.B 1069, Maiduguri, Bema State.
2Department of Physics Alubakar Ta ama Balewa University, Banchi, P.M.B 0248, Bauchi,
${ }^{1}$ EMail: mmalikta2014@gmail.cam

ABSTRACT

The goal of this paper is to obtain the unequal masses of the atoms moving in geometry of two component fermions stem. The twa component fermions systems have been considered. The fermion-dimer scattering length $a_{f d}$ and dimerdimer scattering length $a_{d d}$ in the universal limit of large fermion-fermion scattering length $a_{f f}$ have been computed. The scattering properties of the fermion-dimes, dimer-dimer and the mass ratio dependence of the universal fermion-dimes and universal dimer-dimer scattering length have been analyze. Scattering properties of composed system indicate a deep understanding of the dynamics in many-body of an atom system.
Key word: Atoms, fermion-fermion, fermion-dimer, dimes-dimer and Hamiltonian

INTRODUCTION

In particle physics, a fermion is a particle that follows Fermi-Dirac statistics. These particles obey the Pauli Exclusion Principle. Fermions include all quarks and leptons, as well as all composite particles made of an add number of these, such as all baryons and many atoms and nuclei. Fermions differ pram bosons, which obey Bose-Einstein statistics. A fermion can be an elementary particle, such as the electron, or it can be a composite particle, such as the proton. According to the spin- statistics theorem in any reasonable relativistic quantum field theory, particles with integer spin are bosons, while particles with half-integer spin are fermions. In addition to the spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore, what is usually refersed to as the spin statistics relation is in fact a spin statisties-quantum number relation. [1] As a consequence of the Pauli Exclusion Principle, only one fermion can occupy a particular quantum state at any given time. If multiple fermions have the same spatial probability distribution, then at least one property of each fermion, such as its spin, must be different, Fermions are usually associated with matter, whereas bosons are generally force easier particles, although in the cussent state of particle physics the distinction between the two concepts is unclear. Weakly interacting fermions can also display basonic behavior under extreme conditions. At law temperature fermions show super fluidity for uncharged particles and superconductivity for charged particles. Composite fermions, such as protons and neutrons are the key building blocks of everyday matter. The name fermion was coined by English theoretical physicist Paul Dirac fran the surname of Italian physicist Ensica Fermi. [2] The Standard Model recognizes two types of elementary fermions: quarks and

> An Asessment of Unegual Masses of Atcons Maving in Geametsy of Twa Component fermion Syptem
leptons. In all, the model distingnishes 24 different fermions. There are six quarks (up, dawn, strange , charm, battom and top quarks), and six leptons (electron, electron nentrina, muan, muan nentsina, tau particle and tan neutsina), along with the corsespanding antiparticle of each of these. Mathematically, fermions came in three types: Weyl fermions (massless), Dirac fermions (massive), and Majorana fermions (each its awn antipasticle). Most Standard Model fermions are believed to be Dirac fermions, although it is unknown at this time whether the nentrinos ase Dirac or Majorana fermions (or both). Dirac fermions can be treated as a combination of two Weyl fermions. [3] The atom helium-3 (3 He) is made of twa protons, one neutron, and two electrons, and therefore it is a fermion. The number of bosons within a campasite pasticle made op of simple pasticles bound with a potential has no effect on whether it is a bason or a fermion. Fermionic or basonic behavior of a campasite particle (or system) is only seen at large (compared to sige of the system) distances. At proximity, where spatial structure begins to be important, a compasite particle (or system) bebaves according to its canstituent makenp. Fermions can exhibit basanic behavior when they became loasely baund in paiss. This is the asigin of supescanductivity and the super flidity of helium-3: in superconducting materials, electrons interact through the exchange of phonons, forming Cooper paiss, while in belium-3, Cooper paiss are formed via spin fluctuations. The quasipasticles of the fractional quantum Hall effect ase alsa known as compasite fermions, which ase electrons with an even number of quantiged vartices attached to them.

In a quantum field theary, these can be field configurations of bosons which ase topolagically twisted. These ase cohesent states (or solitons) which behave like a particle, and they can be fermionic even if all the constituent particles are basons. This was discovered by Tony Skypme in the early 19601, so fermions made of bosons ase named skypmions after him. Skysme's arifinal example invalved fields which take values on a three-dimensional sphese, the ariginal nonlinear sigma model which describes the large distance behavior of peans. In Skyme's model, sproduced in the large N or string appraximation to quantum chromodynamics (QCD), the proton and neutron are fermionic topological solitons of the pion field. Whereas Skyme's example invalved pion physics, these is a much mase familiar example in quantum electrodynamics with a magnetic manopale. A basonic manopole with the smallest passible magnetic charge and a bosonic version of the electron will form a fermionic dyon. The analogy between the Skypme field and the Hisss field of the electroweak sector bas been used to pastulate that all fermions are skymmions. [4] This could explain why all known fermions bave basyon or lepton quantum numbers and provide a physical mechanism for the Pauli Exclusion Principle.

It consists of a pastially ardered set in which every two elements bave a unique supremun (alsa called a least upper bound or join) and a unique infimum (alsa called a greatest lower bound ar meet). An
example is given by the natural numbers, partially ordered by divisibility, for which the unique supsemum is the least common multiple and the unique infinom is the greatest common divisor. [S] Atams maving in geametry can also be charactesiged as algeloraic structures satislying estain axiamatic identities. Since the twa definitions are equivalent, lattice theary draws on both arder theary and universal algebra. [6] Atams maving in geametry have some connections to the family of group-like algelraic structures. Because meet and join both commute and associate, an atoms moving in geametry can be viewed as consisting of two comonutative semigroups having the same domain. For a baunded atams maving in geametry, these semifroups ase in fact commetative manoids. The absosption law is the only defining identity that is peculias to atoms maving in geametry theary. By commutativity and associativity one can think of join and meet as linasy operations that are defined on non-empty finite sets, sather than on elements. In a bounded atoms moving in geametry the empty join and the empty meet can also be defined (as 0 and 1, respectively). [7] This makes bounded atoms maving in geametry somewhat mose natural than general atoms moving in geametry and many authors requise all atoms moving in geametsy to be bounded.

MATERIALS AND METHOD

For the system of particles interacting with a finite range potential, at law energies the seattering phase shift $\delta(\rho)$ is parameterized by effective range expansion,
$p \tan \delta(\rho)=\frac{1}{a_{f f}}+\frac{1}{2} r_{f f} p^{2}+\cdots$
1
Whese p is the selative mamentum letween twa fermions, $a_{f f}$ is the seattering length, and $r_{f f}$ is the effective range. [8] In the gera range limit, the scattering length is selated to dimer linding energy by formula
$B_{d}=\frac{1}{\left(\begin{array}{ll}2 \mu & \left.a_{f f}^{2}\right)\end{array}\right) .}$

2

Where μ is the reduced mass the non-relativistic Hamiltonian in the cantinumm is
$\widehat{H}=\sum_{s} \frac{1}{2 m_{s}} \int d r \nabla b_{s}^{+}(r) \nabla b_{s}(r)+C_{0} \int d r b_{\uparrow}^{+}(r) b_{\uparrow}(r) b_{\downarrow}^{+}(r) b_{\downarrow}(r)$
3
Where s labels the pasticle species, C_{0} is the zera sange interaction strength, b_{S} and b_{S}^{+}ase the anmibilation and ereation operatoss, respectively.
Therefore, the non-relativistic Hamiltonian with $O\left(a^{4}\right)$ improved action is
$H=\sum_{s} \frac{1}{2 m_{s}} \sum_{n}\left[\sum_{k=-3}^{3} \omega_{|k|} b_{s}^{+}(n) b_{s}(n+k)\right]+C_{0} \sum_{n} b_{\uparrow}^{+}(r) b_{\uparrow}(r) b_{\downarrow}^{+}(r) b_{\downarrow}(r) 4$ Whese n labels the atoms maving in geametry and $\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}$.

> An Assessment of Unequal Masses of Atoms Moving in Geometry of Twa Component fermion System

Let us consider a two body system with gera total momentum and a potential of a finite range R an a periodic. Then the wave function at distances $r>R$ takes the asymptotic from $\Psi(r) \sim \cos [p r+$ $\delta(\rho)]$, due to the periodicity it satisfies the condition $\Psi\left(\frac{L a}{2}\right)=\Psi\left(-\frac{L a}{2}\right)$ and $\left.\partial_{r} \Psi(r)\right|_{\frac{L a}{2}}=$ $\left.\partial_{r} \Psi(r)\right|_{-\frac{L a}{2}}$, which yield
$p L a+2 \delta(\rho)=2 n \pi \quad n=0,1,2, \ldots$
5
This relation gives us direct access to the scattering.
First, at wan zero atom moving in geometry spacing the effective mass of the dimes is not equal to $m_{\uparrow}+m_{\downarrow}$. Therefore, we compute the dimer effective mass by
$D\left(p, m_{d}\right)=c_{0} \frac{p^{2}}{2 m_{d}}+c_{1} p^{4}+\cdots$
6
Where c_{i} are the coefficients to be determined by the fit, p is the total mamenturn of the moving dimes and m_{d} is the physical dimer mass. The relative momenturn of the fermion-dimer is determined by $E_{f d}^{L}=\frac{p^{2}}{2 \mu_{f d}^{*}}-B_{d}-\Delta B_{d}^{L} \cos \left(\begin{array}{lll}p & a & \alpha\end{array}\right)$
7
Where $E_{f d}^{L}$ is the fermion-dimer energy at atom size $L, \Delta B_{d}$ is the finite volume correction of the dimer binding energy $\Delta B_{d}=B_{d}^{L}-B_{d}, \quad \alpha=\frac{m_{\uparrow}}{\left(m_{\uparrow}+m_{\downarrow}\right)}$ and $\mu_{f d}^{*}$ is the fermion-dimer reduced mass. In each calculation make a fit using the phase shifts and the relative momentum in the truncated effective range expansion

$$
a_{f f} p \tan \delta(\rho)=\frac{1}{\frac{a_{f d}}{a_{f f}}}+\frac{1}{2}\left(\frac{r_{f d}}{a_{f f}}\right)\left(a_{f f} p\right)^{2}+\cdots
$$

8
Where $a_{f d}$ and $r_{f d}$ are the fermion-dimer scattering length and effective range. [8] Therefore, the relative momentum between twa dimer are given by
$E_{d d}^{L}=\frac{p^{2}}{2 \mu_{d d}^{*}}-2 B_{d}-2 \Delta B_{d}^{L} \cos (p$ a $L \alpha)$
9
Where $E_{d d}^{L}$ is the dimer-dimer energy at atom size L and $\mu_{d d}^{*}$ is the dimer-dimer reduced mass. The computed scattering phase shifts using the data of atom moving in geometry are used in the following truncated effective range expansion to extract the scattering length
$a_{f f} p \tan \delta(\rho)=\frac{1}{\frac{a_{d d}}{a_{f f}}}+\frac{1}{2}\left(\frac{r_{d d}}{a_{f f}}\right)\left(a_{f f} p\right)^{2}+\cdots$
10
Where $a_{d d}$ is the dimer-dimer seattering length and $r_{d d}$ is the dimer-dimer effective sange.

fermion-dimer

Let consider two spin \uparrow and one spin \downarrow particles interacting via delta function potential. The Hamiltonian of the system is,
$H_{f d}=-\frac{1}{2 m_{1}} \partial_{x_{1}}^{2}-\frac{1}{2 m_{2}} \partial_{x_{2}}^{2}-\frac{1}{2 m_{3}} \partial_{x_{3}}^{2}+C_{0}\left[\delta\left(x_{3}-x_{1}\right)+\delta\left(x_{3}-x_{2}\right)\right]$
11
Where $\partial_{x}^{2}=\frac{\partial^{2}}{\partial x^{2}} \quad m_{1}, m_{2}$ and m_{3} ase the masses and x_{1}, x_{2} and x_{3} are the coordinates of the spin \uparrow, spin \uparrow and spin \downarrow particles sespectively. Equation (11) can be sewritten as
$H_{f d}=-\frac{1}{2 m_{2}} \partial_{x}^{2}-\frac{1}{2 m_{3}} \partial_{y}^{2}+C_{0}\left[\delta\left(y-\frac{x}{2}\right)+\delta\left(y-\frac{x}{2}\right)\right]$
12
Where
$m_{1}=m_{2}=m_{\uparrow}$
$m_{3}=m_{\uparrow}$
$\mu_{2}=\frac{m_{\uparrow}}{2}$
$\mu_{3}=\frac{2 m_{\uparrow} m_{\downarrow}}{\left(2 m_{\uparrow}+m_{\downarrow}\right)}$
$x=x_{2}-x_{1}$
$y=\frac{m_{1} x_{1}+m_{2} x_{2}}{\left(m_{1}+m_{2}\right)}-x_{3}$
13
The Schrödinger equation in the limit $m_{\downarrow} \rightarrow \infty$ is $-\frac{1}{2 \mu_{3}} \partial_{y}^{2} \phi(y ; x)+C_{0}\left[\delta\left(y-\frac{x}{2}\right)+\right.$ $\left.\delta\left(y-\frac{x}{2}\right)\right] \phi(y ; x)=u(x) \phi(y ; x)$

14
Where $\phi(y ; x)$ is the solution of equation (14) for a fixed value of x. Using boundary canditions, the continuity of the wave functions and the discontinuity of their first desivative $y= \pm \frac{x}{2}$, we abtain the energy as a function of x,
$u_{l}(x)=\frac{1}{2 \mu_{3}}\left[-\beta+\frac{1}{x} W\left((-1)^{l+1} x \beta e^{x \beta}\right)\right]^{2}$
15

An Assessment of Unequal Masses of Atoms Moving in Geametry of Twa Component fermion System

Where $\beta=C_{0} \mu_{3}, W(r)$ is the Lambert W function and $l=0 \quad(l=1)$ gives the even (odd) solution. [8] Now, using $u_{l}(x)$, the solutions of equation (14) in equation (12) and we can solve equation (12)
$-\frac{1}{2 \mu_{3}} \partial_{y}^{2} \Psi(x)+u_{l}(x) \Psi(x)=E \Psi(x)$
The total wave function of the fermion-dimer system, equation (12), $\Psi(x, y)=\Psi(x) \phi(y ; x)$ is antisymmetsic under exchange of $x_{1} \leftrightarrow x_{2}$.

Dimen-dimes

Let consides twa spin \uparrow and ane spin \downarrow pasticles. The particles with different species ase interacting via delta function potential. The Hamiltonian of the system is,
$H_{f d}=-\frac{1}{2 m_{1}} \partial_{x_{1}}^{2}-\frac{1}{2 m_{2}} \partial_{x_{2}}^{2}-\frac{1}{2 m_{3}} \partial_{x_{3}}^{2}-\frac{1}{2 m_{3}} \partial_{x_{4}}^{2}+c_{0}\left[\delta\left(x_{3}-x_{1}\right)+\delta\left(x_{3}-x_{2}\right)+\right.$
$\left.\delta\left(x_{4}-x_{1}\right)+\delta\left(x_{4}-x_{2}\right)\right]$
Where m_{1}, m_{2}, m_{3} and m_{4} are the masses and x_{1}, x_{2}, x_{3} and x_{4} are the coordinates of the spin \uparrow, spin \uparrow and spin \downarrow pastides respectively. Equation (17) can be sewritten as
$H_{f d}=-\frac{1}{2 \mu_{2}} \partial_{x}^{2}-\frac{1}{2 \mu_{3}} \partial_{y}^{2}-\frac{1}{2 \mu_{4}} \partial_{y}^{2}+c_{0}\left[\delta\left(y-\frac{x}{2}\right)+\delta\left(y-\frac{x}{2}\right)+\delta\left(z-\frac{x}{2}+\right.\right.$
$\left.\left.\frac{m_{\uparrow} y}{2 m_{\uparrow}+m_{\downarrow}}\right)+\delta\left(z-\frac{x}{2}+\frac{m_{\uparrow} y}{2 m_{\uparrow}+m_{\downarrow}}\right)\right]$
18

Where

$m_{1}=m_{2}=m_{\uparrow}$
$m_{3}=m_{4}=m_{\downarrow}$
$\mu_{2}=\frac{m_{\uparrow}}{2}$
$\mu_{3}=\frac{2 m_{\uparrow} m_{\downarrow}}{\left(2 m_{\uparrow}+m_{\downarrow}\right)}$
$\mu_{4}=\frac{\left(2 m_{\uparrow}+m_{\downarrow}\right) m_{\downarrow}}{\left(2 m_{\uparrow}+m_{\downarrow}\right)}$
$x=x_{2}-x_{1}$
$y=\frac{m_{1} x_{1}+m_{2} x_{2}}{\left(m_{1}+m_{2}\right)}-x_{3}$
$z=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}-x_{4}$
19
The Schrödinger equation in the limit $m_{\downarrow} \rightarrow \infty$ is
$\left[-\frac{1}{2 \mu_{3}} \partial_{y}^{2}+C_{0} \delta\left(y-\frac{x}{2}\right)+C_{0} \delta\left(y+\frac{x}{2}\right)-u_{3}(x)\right] \phi(y, z ; x)+\left[-\frac{1}{2 \mu_{3}} \partial_{z}^{2}+\right.$
$\left.C_{0} \delta\left(z-\frac{x}{2}\right)+C_{0} \delta\left(z+\frac{x}{2}\right)-u_{4}(x)\right] \phi(y, z ; x)=0$
20
Where $\phi(y, z ; x)$ is the solution of equation (20) for a fixed value of x and $u_{3}(x)+u_{4}(x)$ is the energy of the system of equation (20) for a fixed value of x. Using boundary canditions, the cantinnity of the wave functions and the discontinuity of their first desivative $y= \pm \frac{x}{2}$, and $z= \pm \frac{x}{2}$ we obtain the follawing solutions
$u_{3, l}(x)=\frac{1}{2 \mu_{3}}\left[-\beta_{3}+\frac{1}{x} W\left((-1)^{l+1} x \beta_{3} e^{x \beta_{3}}\right)\right]^{2}$
21
$u_{4, l}(x)=\frac{1}{2 \mu_{4}}\left[-\beta_{4}+\frac{1}{x} W\left((-1)^{l+1} x \beta_{4} e^{x \beta_{4}}\right)\right]^{2}$
22
Where $\beta_{3}=C_{0} \mu_{3}, \beta_{4}=C_{0} \mu_{4}, W(r)$ is the lambert W function and $l=0(l=1)$ sives the even (odd) solution. [8] Now, using $u_{3, l}(x)$ and $u_{4, l}(x)$ in equation (18)
$-\frac{1}{2 \mu_{2}} \partial_{x}^{2} \Psi(x)+u_{3, l}(x)+u_{4, l}(x) \Psi(x)=E \Psi(x)$
The dimer-dimer system, the total wave function of equation (12), $\Psi(x, y, z)=\Psi(x) \phi(y, z ; x)$ is antisymmetsic under exchange of $x_{1} \leftrightarrow x_{2}$.

Hamiltomian Movement of Atom in Geametry

The non-relativistic Hamiltonian with $O\left(a^{n}\right)$ improved action and we show the desivation of the hopping coefficients in equation (4). Let us consider a single pasticle non-relativistic free Hamiltonian, $\widehat{H}_{\text {free }}=\frac{1}{2 m} \int d r \nabla b_{s}^{+} \nabla b_{s}(r)$
24
And it' 1 the movement of atom in geametry can be writter as
$H_{\text {free }}=\frac{1}{2 m} \sum_{n} \sum_{k=0}^{k_{\max }} w_{k}\left[b_{s}^{+}(n+k)+b_{s}(n) b_{s}^{+}(n) b_{s}(n+k)\right]$
25
Using the Schrödinger equation for the single pasticle, we can find the expression for the energy dispersion relation
$H_{\text {free }}|p\rangle=Q(p)|p\rangle$
26
Where $|p\rangle$ is defined in the momentum space as in the following

An Anesment of Unegual Mases of Atorns Maving in Geometry of Twa Component fermion Syptem

$|p\rangle=\frac{1}{\sqrt{L}} \sum_{n} e^{i p n} b_{s}^{+}(n)|p\rangle$
27
And $Q(p)$ is the movement of atom dispersion selation
$Q(p)=\frac{1}{m} \sum_{k=0}^{k_{\max }} w_{k} \cos (k p)=\sum_{k=0}^{k_{\max }} w_{k} \sum_{v=0}^{\infty} \frac{(-1)^{v}}{(2 v)!} k^{2 v} p^{2 v}$
28
The final expression can be solved up to desired arder in momenturn such that the dispersion selation is $Q(p)=\frac{p^{2}}{2 m}+O\left(p^{2 l}\right)$. [8] for instance, if we solve equation (28) for w_{k} bapping caefficients which gives the dispersion selation $Q(p)=\frac{p^{2}}{2 m}+O\left(p^{8}\right)$, then we find $k_{m a x}=3$ and we altain the following set of equations,
$w_{0}+w_{1}+w_{2}+w_{3}=0$
29
$-\frac{w_{1}}{2}-2 w_{2}-\frac{9 w_{3}}{2}=\frac{1}{2}$
30
$\frac{w_{1}}{24}+\frac{2 w_{2}}{3}+\frac{27 w_{3}}{8}=0$
31
$-\frac{w_{1}}{720}-\frac{4 w_{2}}{45}-\frac{81 w_{3}}{80}=0$
32
Where $w_{0}=\frac{49}{18}, w_{1}=\frac{-3}{2}, w_{2}=\frac{3}{20}, w_{3}=\frac{-1}{90}$

Results

The follawing are the results abtain in the tables belaw:
Table 1a: Twa fermion Scattering length of $\frac{m_{\uparrow}}{m_{\downarrow}}=5.0$ and $\frac{m_{\uparrow}}{m_{\downarrow}}=10.0$

S / N	$\frac{a_{f f}^{*}}{a_{f f}}$	$\frac{m_{\uparrow}}{m_{\downarrow}}=5.0$	$\frac{m_{\uparrow}}{m_{\downarrow}}$
		$\frac{a}{a_{f f}}$	$=\frac{10.0}{a_{f f}}$

ISSN: 2536-7315 (Print) 2536-7323 (Dnline) Volume S, Number 1, Mared, 2020 atth:I/www. canimediapublishing.com atte://www.canimediafullishing.com	

1	1	0.40	0.42
2	1	0.50	0.54
3	1	0.57	0.60
4	1	0.65	0.67
5	1	0.70	0.74
6	1	0.75	0.78
7	1	0.80	0.83
8	1	0.85	0.90
9	1	0.90	0.96
10	1	0.95	1.00
11	1	1.00	-

Table 18: Twa fermion Seattering length of $\frac{m_{\uparrow}}{m_{\downarrow}}=0.5$ and $\frac{m_{\uparrow}}{m_{\downarrow}}=1.0$

S / N	$\frac{a_{f f}^{*}}{a_{f f}}$	$\frac{m_{\uparrow}}{m_{\downarrow}}=5.0$ $\frac{a}{a_{f f}}$	$\frac{m_{\uparrow}}{m_{\downarrow}}$ $=\frac{10.0}{a}$
1	1	0.25	0.30
2	1	0.31	0.37
3	1	0.38	0.45
4	1	0.43	0.50
5	1	0.45	0.55
6	1	0.50	0.58
7	1	0.53	0.61
8	1	0.55	0.66
9	1	0.57	0.70
10	1	0.60	0.74
11	1	0.63	0.77
12	1	0.65	0.80
13	1	0.67	0.83
14	1	0.70	0.85
15	1	0.73	0.88
16	1	0.75	0.92
17	1	0.78	0.94
18	1	0.80	0.96
19	1	0.82	0.99

An Aversment of Unequal Mases of Atoms Maving in Geometry of Twa Compenent fermion Syptem

Table 2: The fermion-dimer seattering length extrapolation with values of the mass satio

S/N	$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 0.1 \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 2.0 \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 4.0 \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 10.0 \end{aligned}$	
	$\frac{a_{f d}}{a_{f f}}$	$\frac{a}{a_{f f}}$										
1	1.02	0.06	1.50	0.12	1.98	0.15	2.59	0.16	3.20	0.17	3.22	0.18
2	1.02	0.07	1.50	0.16	1.98	0.19	2.59	0.20	3.20	0.22	3.22	0.22
3	1.02	0.09	1.50	0.20	1.98	0.23	2.59	0.24	3.20	0.25	3.22	0.26
4	1.02	0.10	1.50	0.21	1.98	0.25	2.59	0.26	3.20	0.27	3.22	0.29
5	1.02	0.13	1.51	0.30	1.99	0.36	2.59	0.37	3.21	0.38	3.23	0.40
6	1.02	0.18	1.52	0.37	1.99	0.45	2.59	0.47	3.21	0.48	3.34	0.50
7	1.02	0.19	1.55	0.43	1.99	0.52	2.59	0.54	3.22	0.52	3.35	0.60
8	1.02	0.22	1.57	0.49	1.99	0.57	2.59	0.62	3.23	0.65	3.38	0.66
9	1.02	0.24	1.60	0.53	1.99	0.64	2.59	0.69	3.24	0.71	3.46	0.74
10	1.02	0.26	1.63	0.56	1.99	0.68	2.59	0.74	3.25	0.76	3.47	0.78
11	1.02	0.27	1.66	0.62	1.99	0.71	2.59	0.78	3.26	0.83	3.48	0.84
12	1.02	0.28	1.70	0.66	2.00	0.77	2.60	0.83	3.27	0.84	3.49	0.90
13	1.02	0.30	1.70	0.70	2.00	0.80	2.60	0.88	3.28	0.72	3.49	0.95
14	1.02	0.31	1.70	0.72	2.00	0.84	2.60	0.92	3.30	0.97	3.50	0.99
15	1.02	0.33	1.70	0.76	2.00	0.88	2.60	0.96	-	-	-	-
16	1.02	0.35	1.70	0.79	2.00	0.92	-	-	-	-	-	-
17	1.02	0.36	1.70	0.83	2.00	0.94	-	-	-	-	-	-
18	1.02	0.37	1.70	0.84	2.00	0.98	-	-	-	-	-	-
19	1.02	0.38	1.70	0.88	-	-	-	-	-	-	-	-
20	1.02	0.39	1.70	0.90	-		-	-	-	-	-	-
21	1.02	0.40	1.70	0.93	-	-	-	-	-	-	-	-
22	1.02	0.42	1.70	0.95	-	-	-	-	-	-	-	-
23	1.02	0.43	1.70	0.99	-	-	-	-	-	-	-	-

Table 3: The Dimer-dimer seattering length extrapolation with values of the mass ratio

S/N	$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 1.0 \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 2.0 \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 5.0 \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 80 \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 11.0 \end{aligned}$		$\begin{aligned} & \frac{m_{\uparrow}}{m_{\downarrow}}= \\ & 15.0 \end{aligned}$	
	$\frac{a_{d d}}{a_{f f}}$	$\frac{a}{a_{f f}}$										
1	1.50	0.30	1.50	0.35	$\begin{aligned} & 1.2 \\ & 0 \end{aligned}$	0.40	1.55	0.41	1.75	0.41	1.97	0.42
2	1.50	0.35	1.50	0.43	1.2	0.48	1.55	0.50	1.77	0.52	1.98	0.53
3	1.50	0.43	1.60	0.50	1.	0.56	1.56	0.57	1.78	0.59	1.98	0.60

					21							
4	1.50	0.47	1.60	0.56	1. 21	0.64	1.56	0.66	1.78	0.67	1.99	0.69
5	1.50	0.54	1.60	0.62	1. 21	0.70	1.57	0.72	1.79	0.73	1.99	0.75
6	1.50	0.59	1.60	0.67	1. 21	0.76	1.58	0.78	1.80	0.80	2.00	0.80
7	1.50	0.61	1.60	0.72	1. 22	0.80	1.59	0.84	1.81	0.86	2.00	0.86
8	1.50	0.66	1.70	0.76	1. 22	0.86	1.60	0.88	1.81	0.91	2.01	0.91
9	1.50	0.69	1.70	0.80	1. 22	0.91	1.60	0.92	1.81	0.93	2.01	0.96

An Aversment of Unequal Mases of Atoms Maving in Geometry of Twa Component fermion Syptem

Fiy. 1: The ratio of the two-fermion seattering length.

Firs. 2: Plot of $\frac{a_{f d}}{a_{f f}}$ versus $\frac{a}{a_{f f}}$ for fermion-dimer seattering length.

An Assessment of Unequal Masses of Atoms Moving in Geometry of Twa Component fermion System

Fig. 3: Plot of $\frac{a_{d d}}{a_{f f}}$ versus $\frac{a}{a_{f f}}$ for Dimer-dimer scattering length.

DISCUSSIONS

The twa-fermion scattering lengths pan the atoms moving in geometry calculations for a different mass ratio $\frac{m_{\uparrow}}{m_{\perp}}$ and for having a bo ad range of space where the effective range expansion is extracted $a_{f f}^{*}$ wing the calculation scattering phase shift $\delta(p)$ and the relative momentum p from the atom movement in the geometry. The scattering length $a_{f f}$ is calculated through the use of finding energy. Fir. 1 demonstrates the extract the scattering length from the atoms movement geometry calculations
with negligible atoms astifacts. The continum limits extrapalation of the fermion-dimer seattering length $a_{f d}$ as a fraction of the fermion-fermion scattering length $a_{f f}$. The ratio $\frac{a_{f d}}{a_{f f}}$ is universal and it is known as the universal fermion-dimer seattering length. Fif. 2 display the atom movement in geametry discretization ersoss ase negligible for smaller mass satio $\frac{m_{\uparrow}}{m_{\downarrow}}$ while the continumm limit extrapolation is necessary as $m_{\uparrow} \rightarrow \infty$. Fif. 3 indicate the continumm limit extrapolation of the dimer-dimer seattering length $a_{d d}$ as a fraction of the fermion-fermion seattering length $a_{f f}$. The ratio $\frac{a_{d d}}{a_{f f}}$ is universal and it is called the universal dimer-dimer seattering length.

CONCLUSION

All praperties of the atom maving in geametsy system scale is propartionally with fermion-fermion seattering length while the case of the two component fermions with different masses, the ratio is a new parameter and it changes same of the propesties of the system. Fif. 2 and 3 shaws the final sesults of the universal fermion-dimer seattering length and universal dimer-dimer seattering length.

REFERENCE

Weiner R. M. (2013): Spin-statistics-quantum number connection and supersymmetry" Physical Review 12 valume 87, page 55-83.
Grabam F. (1945): Dirac' I Developments in Atamic Theary. Physical Review B Vol. 64, tp 331-345.
Masi T, Lim C. S., and Mukherjee S. N. (2004): The Physics of the Standard Model and Beyand. Warld Scientific, Vol. 24, of 978-985.
Weiner, R. M. (2010):The Mysteries of Fermions. International vausnal of Theoretical Physics. 49 (5): 1174-1180.
Bussis P. N, Stanley N., and Sankappanavar, H. P., (1981): A Universal Algelra. Springer-Verlag. Vol 34, pp 678-689.
Gassett Biskholl, 1907. Atams maving in geametry Theory. Amesican Mathematical Society, Vol. 25, or 876-897.
Philip W. (1941): Free Atams maving in geametry 1". Annals of Mathematics, Vol. 42, pp 325-329. James G. (2003): Quantum Mechanics. Addison Wesley, $3^{\text {h }}$ edition, op 52-76.

