

INTERVENTION ANALYSIS OF DAILY SOUTH AFRICAN RAND/NAIRA EXCHANGE RATES

Aboko, Igboye Simon Department of Statistics Captain Elechi Amadi Polytechnic, Port Harcourt E-mail: abokoigboye@gmail.com

ABSTRACT

This research paper examined the daily exchange rate of the South African (ZAR) and the Nigerian Naira (NGN) which starts from 11" March, 2017 and 9" September, 2017 reveals an abrupt change on 4" August, 2017 in further favour of the Rand. This change is significant as the pre-intervention series was stationary. The pre-invention series was modeled as ARMA (3,12) model using Augmented Dickey Fuller unit root test which was adjusted to fit the model to be stationary. An intervention model was obtained and the post-intervention data closely agreed with the forecast data.

Keywords: Rand, Naira, Exchange rates, Intervention analysis, ARIMA modeling.

INTRODUCTION

Trade selationship between the country South Africa and the country Nigeria is based on the relative currencies of the South African Rand (ZAR) and the Nigeria Naira (NGN) in this research paper the daily exchange rate shall be modeled by Box Jenkins methods. The particular approach shall be the autoregressive integrated moving average (ARIMA) approach proposed by box and Jenkins (1976). This study has been on the exchange rates between the South African rand (ZAR) and the Nigeria Naira (NGN). For example Aboko and Etuk (2019) conducted a study of the daily exchange rates. They observed that, between March and September, the rand was appreciating relatively but gradually. This current study is motivated by an observation that there is a sudden jump in the level of the amount of Naira per Rand on August 4" 2017 to an even increasing level. This abrupt jump is a source of concern, as an attempt is made to propose and fit an intervention model to the data with a view to provide a basis for intervening to the economic situation of the country intervention modeling was introduced by Box and Tiao (1975) Ever since it was been successfully applied by many scholars. For instance Etuk and Sibeate (2016) conducted a study of the daily exchange rates. They observed that between October 2015 and April, the Yen was appreciating relatively. Etuk and Eleki (2007) have devised a model for intervention of the NGN against the central franc. An adequate representation of the US dollar /NGN exchange rates was given by Mosugu and Anieting 2016) Etuk et al., (2019) have filled an adequate intervention model to daily Gambian, Dalasi. Nigeria. Nigeria Naira exchange rate am et al., (2009) working on a business process activity model and performance measurement using a time series ARIMA intervention analysis, they determined the intervention effects of business process by se-engineering on the performance to some enterprise. Krisbnamurthy et al., (1986) studying on the intervention analysis of a field experiment to assess the buildup effect of advertising found out that there is an increased in advertising in an immediate build-up effect lasting through the purchase order cycle. This is only to maintain a few.

MATERIALS AND METHODS

Data

The data for this research work are 147 daily Rand-NGN exchange rates from 11st March, 2017 to 9st September, 2017 copied from the website <u>www.exchangerates.org.uk/ZAR-NGN-exchange ratehistory.html</u>. These data are read as the amount of Naira in one rand. This website was accessed for this purpose on 10st September,2017.

Intervention Analysis

A time series ${X_i}$ is said to experience an intervention at time t=T if an event changes the course of the time series at that time. The event is called an intervention. The pre—intervention data may be modeled by an ARIMA model (Box and Tiao, 1975). Suppose this is an ARIMA (p, d, q) model. That means that

$$Z_{r} = \frac{c(1)(1-c(2)^{(t-T+1)})}{(1-c(2))}$$
(4)

For the intervention transfer function (4). The final intervention model is obtained by a combination of the noise component (3) and the transfer function (4) to give

$$Y_t = \frac{B(L)\varepsilon_t}{A(L)\nabla^d} + \frac{c(1)*(1-c(2)^{t-T+1})I_t}{(1-c(2))}$$
(5)

Where Is an indicator variable such that 1, =0, t < T and $I_t = 1$, otherwise.

In practice the difference order d is obtained sequentially with d0 initially, lithe realization of the time series $\{X_i\}$ to be analyzed is certified stationary, by for example the Augmented Dickey Fuller (ADF) Test, then d=0. Otherwise first order differencing of the realization is done. If the differences are declared stationary, then d=1. Otherwise, the process continues until stationary is achieved. Next are the autoregressive (AR) and the moving average (MA) orders p and q respectively. They are estimated as the cut-off lags. If any, of the partial autocorrelation function (PACF) and the

autocorrelation function (ACF) respectively. Then the least squares procedure is used to estimate the α 's and the β 's so that model (1) is both stationary and invertible.

Computer Software

Eviews 10 was used for all computations in this research work.

Result and Discussion

The time plot of the data is given below in figure 1 shows intervention at T=141, that is on 4" August 2017.

Figure 1: Time flot of ZAR/NGN Exchange Rate

The pre-intervention series whose time plot shows below in figure 2 shows a stationary time series as seen in the following data.

Figure 2: Time plot of the pre-intervention series

International Journal of Management Studies, Business & Entrepreneurship Research ISSN: 2545-5843(Print) 2545-5877 (Online) Volume 5, Number 2, June 2020 http://www.casimudiapublishing.com

Table 1: Unit Root Text for the pre-intervention series.

Null Hypothesis: ZRNN has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=13)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.163461	0.0011
Test critical values:	1% level	-3.476143	
	5% level	-2.881541	
	10% level	-2.577514	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(ZRNN) Method: Least Squares Date: 10/01/19 Time: 07:15 Sample (adjusted): 3 146 Included observations: 144 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
ZRNN(-1) D(ZRNN(-1)) C	-0.320460 -0.296152 7.727359	0.076970 0.080527 1.857074	-4.163461 -3.677681 4.161041	0.0001 0.0003 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.294617 0.284612 0.598715 50.54279 -128.9437 29.44571 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.002131 0.707863 1.832551 1.894422 1.857692 2.094446

Date: 10/01/19	Time: 07:19
Sample: 1 146	
Included observ	vations: 146

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
·		1	0.542	0.542	43.842	0.000
·		2	0.502	0.294	81.630	0.000
		3	0.457	0.164	113.24	0.000
· –	יקי	4	0.340	-0.029	130.84	0.000
· 🗖	יוםי	5	0.332	0.059	147.77	0.000
· 🖻 🛛	1 🛛 1	6	0.295	0.037	161.17	0.000
· 🖻 🛛	· • • • •	- 7	0.238	-0.012	169.97	0.000
· 🏳	יפי	8	0.259	0.068	180.51	0.000
· 🏳	יפי	9	0.259	0.074	191.13	0.000
' P	·[] ·	10	0.148	-0.122	194.59	0.000
· 🖻 🛛	1 1	11	0.176	0.019	199.58	0.000
· 🗖 ·	יוםי	12	0.173	0.054	204.41	0.000
1 1 1	· ·	13	0.019	-0.190	204.47	0.000
1 🕴 1	·= •	14	-0.009	-0.124	204.48	0.000
101	ומי	15	-0.045	-0.031	204.82	0.000
1 1	· Þ	16	0.001	0.132	204.82	0.000
1 🕴 1	יוםי	17	0.021	0.049	204.89	0.000
1 🕴 1	1 🕴 1	18	0.018	0.023	204.94	0.000
1 1	101	19	-0.008	-0.030	204.96	0.000
1 p i	1 ju 1	20	0.052	0.061	205.41	0.000
· Þ	· 🖻 🗌	21	0.156	0.234	209.60	0.000
1 j 1	י 🗐 י	22	0.022	-0.108	209.68	0.000
· Þ	יםי	23	0.150	0.119	213.64	0.000
1 ju -		24	0.052	-0.128	214.13	0.000
1 ju -	1 1 1	25	0.042	-0.010	214.44	0.000
1 j 1	101	26	0.044	-0.041	214.78	0.000
1 ju -	1 🗍 1	27	0.043	0.032	215.11	0.000
1 🖬 1	1 1	28	0.079	0.003	216.24	0.000
r 🗖 r	1 1	29	0.111	-0.005	218.54	0.000
1 <u>b</u> 1		30	0.075	-0.025	219.58	0.000
· þ.	ւ իւ լ	31	0.068	0.036	220.44	0.000
· þ.	ן ומי	32	0.090	-0.033	221.98	0.000
1 b i		33	0.056	-0.032	222.58	0.000
1 1 1	, i d i i	34	0.013	-0.025	222.61	0.000
. h.	ו או ו	35	0.046	0 077	223.01	0 000

Figure 3: Correlogram of the pre-intervention series

Table 2: An ARIMA (3, 12) model for the pre-intervention series

Dependent Variable: ZRNN Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/01/19 Time: 07:24 Sample: 1 146 Included observations: 146 Failure to improve objective (non-zero gradients) after 181 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	1.425384	9.67E-05	14747.57	0.0000
AR(2)	-0.612766	0.000349	-1756.888	0.0000
AR(3)	0.187381	0.000623	300.8762	0.0000
MA(1)	-1.117005	0.104942	-10.64405	0.0000
MA(2)	0.541864	0.210974	2.568391	0.0113
MA(3)	-0.076815	0.248605	-0.308984	0.7578
MA(4)	-0.318943	0.228521	-1.395682	0.1652
MA(5)	0.244242	0.209598	1.165285	0.2460
MA(6)	-0.129785	0.207444	-0.625641	0.5326
MA(7)	0.145160	0.175343	0.827863	0.4093
MA(8)	-0.061486	0.162177	-0.379127	0.7052
MA(9)	0.070792	0.190148	0.372299	0.7103
MA(10)	-0.403501	0.216264	-1.865778	0.0643
MA(11)	0.707878	0.170408	4.154009	0.0001
MA(12)	-0.577461	0.119776	-4.821170	0.0000
SIGMASQ	0.300747	0.035626	8.441781	0.0000
R-squared	0.443193	Mean depen	dent var	24.11227
Adjusted R-squared	0.378946	S.D. depend	ent var	0.737464
S.E. of regression	0.581173	Akaike info c	riterion	1.971578
Sum squared resid	43.90908	Schwarz crite	erion	2.298549
Log likelihood	-127.9252	Hannan-Quii	nn criter.	2.104434
Durbin-Watson stat	2.008633			
Inverted AR Roots	1.00	.2138i	.21+.38i	
Inverted MA Roots	.99	.8739i	.87+.39i	.5672i
	.56+.72i	.21+.97i	.2197i	3190i
	31+.90i	76+.53i	7653i	-1.00

This shows an ARIMA (3, 12) given by

 $X_{i} = 1.4254X_{i:1} - 0.6128X_{i2} + 0.1874X_{i-3} + 1.1170\varepsilon_{i-1} + 0.5419\varepsilon_{i-2} + 0.7079\varepsilon_{i-11} - 0.5775\varepsilon_{i-12} + \varepsilon_{i}$ on which basis we obtain the following forecasts from for the post-intervention data.

International Journal of Management Studies, Business & Entrepreneurship Research ISSN: 2545-5843(Print) 2545-5877 (Online) Volume 5, Number 2, June 2020 Ittlp://www.casimediapublishing.com

Table 3: Transfer function

Dependent Variable: Z Method: Least Squares (Gauss-Newton / Marquardt steps) Date: 10/02/19 Time: 23:43 Sample: 147 177 Included observations: 31 Convergence achieved after 273 iterations Coefficient covariance computed using outer product of gradients Z=C(1)*(1-C(2)^(T-146))/(1-C(2))

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2)	3.108025 0.191094	0.793501 0.211350	3.916851 0.904157	0.0005 0.3734
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.018232 -0.015622 0.852345 21.06829 -38.00071 2.048888	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		3.813574 0.845765 2.580691 2.673207 2.610849

Hence, the intervention model is given by;

$$Y_{t} = \frac{(1 - 1170B + 0.5419B^{2} + 0.7079B^{11} - 0.5775B^{12})\varepsilon_{t}}{1 - 14254B + 0.6128B^{2} + 0.1874B^{3}} + I_{t} \frac{3.1080 (1 - 0.1911)^{t - 147}}{(1 - 0.911)}$$

Where $I_{t} = 0$, $t < 147$, $I_{t} = 1$, $t \ge 148$

Figure 4: Comparison between the post-intervention data and their intervention forecasts.

CONCLUSION

An intervention model for the daily exchange rate between South African and Nigerian has been examined. Further evidence of its adequacy is on the basis of which there is close agreement between the post intervention forecast and the observations in which goodness of fit of the model across the entire series could be observed. Intervention can therefore be based on it by policy makers, planners and managers.

REFERENCES

- Etuk, E. H. Izbudu, R. C, Chims, B. E. Moffat, I. U. (2019). Daily Ezyptain Dalasi/Nizerian naira Exchanze rates Intervention Analysis. CARD. *International Journal of Science and* Advanced innovative Research, Vol. 4(1): 15 - 20
- Krishnamurthi, J. Narayan & S. P. Raj, (1986). "Intervention analysis of a Field Experiment to Assess the build up effect of Advertising", *Journal of Marketing Research*, 27(4): 337-345
- Lam, C. Y., Ip, W. H. and Lau, C. W. (2009). A business process activity model and performance measurement using a time series ARIMA intervention analysis. Expert Systems with Applications, 36(3): 6986-6994.
- Box, G. E. P. & Tiao, G. C. (1975). Intervention analysis with applications to economic and environmental problems. *Journal of American Statistical Association*, Vol. 70(349): 70-79
- Box, G. E. P. & Tiao, G. C. (1975). Intervention analysis with applications to economic and environmental problems. *Journal of American Statistical Association*, Vol. 70(349): 70-79
- BOX, G.E & Jenkins, G.M; Reinsel, G.C (1994). Time series Analysis: Forecasting and control; 3ed. San Francises: Holden Day.

- Etuk, E. H. & Sibeate, P. (2016). A Daily Japanese Yen-Nigerian Naira Exchange Rates simulation Model. *Journal of physical science and innovation*, 8 (1): 38-48
- Mosuçu, J. K. and Anieting, A. E. (2016). Intervention analysis of Nigeria's foreign exchange rate. Journal of Applied Sciences and Environmental Management, Vol. 20(3): 891-894.
- Isboye & Etuk, E.H (2019). Daily Egyptian Pound and Nigerian Naira exchange rates intervention. International Journal of Science and Advanced Innovative Research ISSN: 1536 - 7315 Volume (4) 11

DATA ON SOUTH AFRICAN

MARCH, 2017

1 ZAR=	23.7018 NGN	23.8465	24.0131	23.942	24.7547
24.5427	24.9045	24.8912	24.0716	24.2556	24.2532
24.4185	25.255	25.3045	25.3085	25.42	14 24.7011
24.702	24.2656	22.993	23.470	8	

APRIL, 2017

23.4708	23.5857	22.8915	22.9815	22.8687	22.8732
22. 9819	22. 9825	22.5949	22.8233	22.8872	23.3938
23.4175	23.5195	23.5289	23.5787	23.669	23.5908
23.8318	24.0345	23.9172	23.9172	24.1594	24.3869
23. 9853	23.7188	23.6305	23.629	23. 6237	23.7681

MAY, 2017

23.5492	23.8868	23.4604	23.2021	23.3659	23.3659
23.4116	23.1335	23.1521	23.546	23.5951	23. 7439
23.7439	23.5709	24.5963	24.0614	23.7668	23.8092
24.1028	23.6935	23.9378	23.7486	24.1943	25.1348
24.3583	24.5584	24.5621	24.9419	25.044	5 24.6481
23.9868					

JUNE, 2017

24.4448	24.4283	24.4318	24.8244	25.4841	24.5018
24.4439	24.4284	24.2915	24.2898	24.6364	24.5645
24.6745	25.709	24.7103	25.3182	25.3104	24.5916
24.7777	24.8158	24.321	24.3159	24.3233	24.3309
25.2022	24.0523	27.101	24.1359	24.0143	

JULY, 2017

Intervention Analysis of Daily South African Rand/Naira Exchange Rates

24.0146	24.0382	23.8657	23.8568	23.4679	24.7274
26.1048	23.5249	24.5589	23.4084	23.8288	23.7874
24.0755	24.0755	24.0801	23.6156	24.3837	27.1174
23.867	24.3793	24.3701	24.3485	24.2944	24.0763
24.1721	24.2736	23.5482	23.5471	23.6938	23.6923

AUGUST, 2017

23.8031	23.8368	23.5397	27.475	27.475	27.3212
27.6022	27.5007	27.1538	27.035	26.9673	26.9677
27.0885	26.5085	27.498	27.494	27.1319	27.5555
27.5604	27.1284	27.2352	27. 2911	27.6126	27.3427
27.3211	27.3424	27.3424	27. 5523	27.4856	27.2707
27.3757					

SEPTEMBER, 2017

27.7879 27.7879 27.6565