

SARIMA MODELLING OF DAILY LABORATORY CONFIRMED CASES OF CORONAVIRUS IN NIGERIA

Ette Harrison Etuk

Department of Mathematics Rivers State University, Port Harcourt, Nigeria Email: <u>ettetuk@yaboo.com</u>, <u>ettebetuk@gmail.com</u>, <u>etuk.ette@ust.edu.ng</u>

ABSTRACT: This study is an attempt to model daily confirmed cases of coronavirus in Nigeria. A time flot of the series shows an upward trend with some seasonality. It is tested for unit test and is shown to be non-stationary. Its difference shows evidence of stationarity. The correlogram of the difference shows significant spikes at the partial autocorrelation function at lags 1 and 12 and at its autocorrelation function at lags 1 and 12 and at its autocorrelation. This suggests an autoregressive fit of lags 1 and 12 and 14. A fit of the model shows that only the moving average lags are significant. A more specific SARIMA(0, 1, 1) \times (0, 0, 1) $_{15}$ model is fitted to the series. This shows that the series may be regarded as a SARIMA(0, 1, 1) \times (0, 0, 1) $_{15}$ case.

INTRODUCTION

Coronavirus disease has attained a worldwide status as a pandemic. The prime case recorded in Nigeria appeared on February 27, 2020 and was confirmed at the Virology Laboratory of the Lagos State University Teachnig Hospital. He is from Italy and arrived Nigeria from Milan, Italy on a business trip. He was being managed at the Infectious Disease Hospital, Yaba, Lagos. The Federal Ministry of Health announced the first confirmed case in Nigeria on the next day, 28st February 2020. (Ehanise, 2020). The occurrence of a phenomenon like this is often an opportunity for researchers to model its incidence and in the case of a medical condition like this to proffer a curative solution to it. As published in Thisday newspaper, Gumel (2020) underscored this point saying that a researcher after studying the components of this phenomenon can model it using mathematical tools. Voice of Nigeria announces that Professor Maurice Iwu has claimed to have discovered a cure for it Ukok(2020).

The approach of seasonal autoregressive integrated moving average modelling is to be adopted in this work. Proposed by Box and Jenkins (1976) it has been widely successfully applied to model seasonal time series. To mention a few, look at Etuk (2013), Mwanga *et al.* (2017) and Adams and Bamanga (2020). Here it is our intention to see the daily occurrence of this disease in Nigeria as a time series and model it accordingly. Section 2 dwells on Materials and Methods, section 3 on Results and Discussion and section 4 on the Conclusion.

MATERIALS AND METHODS

Data: The data used for this study are 64 values of daily cumulative laboratory confirmed cases of coronavirus-19 recorded by Nigerian Centre of Disease Control with website <u>http://covid19.ncdc.gov.ng/</u>. They are displayed in the appendix.

Seasonal Autoregressive Integrated Moving Average Modelling

It is our intention to study this covid-19 phenomenon as a daly time series. It is hoped that it shall be modelled as a seasonal autoregressive integrated moving average model.

A time series X_1, X_2, \ldots, X_n is said to follow an autoregressive moving average model if

 $X_{i} = \alpha_{i}X_{i1} + \alpha_{2}X_{i2} + \dots + \alpha_{i}X_{i_{1}} + \beta_{1}\varepsilon_{i1} + \beta_{2}\varepsilon_{i2} + \dots + \beta_{i}\varepsilon_{i_{1}}$ (1)

where $\{\varepsilon_i\}$ is a white noise process, the α 's and β 's are constants chosen such that the model (1) is both stationary and invertible. Model (1) is denoted as an ARMA(p, q). it may be written as an ARMA(p, q). It may be written as

 $A(L)X_{i} = B(L)\varepsilon_{i}$

where $A(L) = 1 - \alpha_1 L - \alpha_2 L^2 - \dots - \alpha_r L^r$ and $B(L) = 1 + \beta_1 L + \beta_2 L^2 + \dots + \beta_r L^r$ and $L^t X_r = X_{rs}$.

Hardly is a time series $\{X_i\}$ stationary. In that case Box and Jenkins (1976) proposed that differencing to an order d could render it stationary. Then if the difference of $\{X_i\}$, $\nabla^i(X_t)$, 1 = 1, 2, ..., d -1, is non-stationary and the dⁱⁱⁱ difference is stationary then a seplacement of X_i by $\nabla^d(X_t)$, in (1) or (2) yields an autoregressive integrated moving average model of order (p, d, q) in X_i denoted by an ARIMA(p, d, q) model. Then $\nabla = 1 - L$.

If seasonal periodicity s is observed to happen in the series, assuming that there is a seasonal trend of period D, then the model becomes

$$\Phi(L^{*})A(L)X_{*} = \Box(L^{*})B(L)$$

where $\Phi(L^{\circ}) = 1 - \varphi_{1}L^{\circ} - \varphi_{2}L^{2\circ} - ... - \varphi_{P}L^{PS}$ and $\Box(L^{\circ}) = 1 + \theta_{1}L^{\circ} + \theta_{2}L^{2\circ} + ... + \theta_{2}L^{2\circ}$. Model (3) is expressed as a seasonal autoregressive integrated moving average model of order (μ , d, q)×(P, D, Q). denoted by SARIMA(μ , d, q)×(P, D, Q).. An indication of autoregressive order μ is a significant spike at lag μ on the partial autocorrelation function and an indication of a moving average order q is a significant spike on the partial autocorrelation function at lag q.

Computer Software: The software used for this work is eviews 10. It uses the least square approach too estimation of model parameters.

RESULTS AND DISCUSSION

The difference of the data yields daily laboratory confirmed cases of coronavirus in Nigeria. Its time plot is in figure 1. This shows a positive trend and some seasonality. The Augmented Dickey Fuller test of stationarity of Table 1 adjudges it as non-stationary, in which case differencing has to be done on it.

(2)

(3)

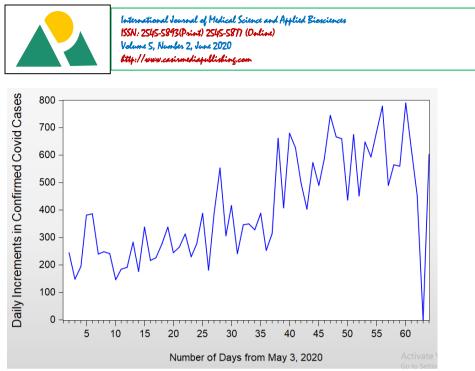


Figure 1: Time Plot of number of daily confirmed cases of cornavirus in Nigeria.

Table 1: Unit Root Test for confirmed cases

Null Hypothesis: DCOVID has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=10)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.1159
1% level	-3.542097	
5% level	-2.910019	
10% level	-2.592645	
	1% level 5% level	Iler test statistic -2.519660 1% level -3.542097 5% level -2.910019

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DCOVID) Method: Least Squares Date: 07/05/20 Time: 06:15 Sample (adjusted): 4 64 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DCOVID(-1) D(DCOVID(-1)) C	-0.280798 -0.400361 119.8430	0.111443 0.135526 49.07743	-2.519660 -2.954133 2.441916	0.0145 0.0045 0.0177
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.320722 0.297299 143.9366 1201629. -388.1489 13.69242 0.000013	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		7.459016 171.7062 12.82455 12.92837 12.86524 2.035145

The time plot of differences of confirmed cases in Figure2 shows a borizontal trend and some seasonality. The Augmented Dickey Fuller test on the series in Table 2 shows that they are stationary.

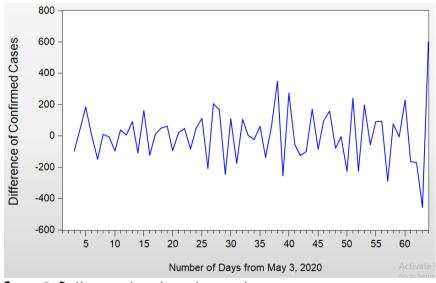


Figure 2: Difference of confirmed cases of coronavirus

Table 2: Unit Root Test on Difference of confirmed cases

loternational Journal of Medical Science and Applied Biosciences ISSN: 2545-5893(Print) 2545-5877 (Online) Volume 5, Number 2, June 2020 Ittp://www.casimediapublishing.com

Null Hypothesis: DDCOVID has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-12.31078	0.0000
Test critical values:	1% level 5% level	-3.542097 -2.910019	
	10% level	-2.592645	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DDCOVID) Method: Least Squares Date: 07/05/20 Time: 06:18 Sample (adjusted): 4 64 Included observations: 61 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DDCOVID(-1) C	-1.554586 5.240674	0.126278 19.25306	-12.31078 0.272200	0.0000 0.7864
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.719788 0.715039 150.3194 1333160. -391.3170 151.5552 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		11.45902 281.5934 12.89564 12.96485 12.92276 2.118366

The correlogram of the difference of the confirmed cases in Figure 3 below shows a positive spike at lags 1 and 12 for the partial autocorrelation function (PACF) and significant spikes at lags 1 and 13 in the autocorrelation function (ACF), the spike at lag 13 surrounded with comparative spikes, in direction and length, at lags 12 and 14, an indication of seasonality of lag 13. This has led to the hypothesis of an ARIMA(12, 1, 14) with the autoregressive lags 1 and 12 and the moving average lags 1, 13 and 14. A summary of the model fit in Table 3 shows that the only significant parameters are at the moving average lags of 1, 13 and 14, which is an indication of a seasonality of period 13.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.442	-0.442	12.718	0.000
. .		2	0.020	-0.218	12.746	0.002
		3	-0.120	-0.267	13.707	0.003
		4	0.013	-0.237	13.719	0.008
		5	0.010	-0.196	13.725	0.017
· p ·	' '	6	0.067	-0.090	14.039	0.029
	'[''	7	-0.024	-0.074	14.081	0.050
	'=' '	8	-0.069	-0.161	14.433	0.071
· þ ·	'4'	9	0.086	-0.039	14.983	0.091
	' '	10	-0.060	-0.078	15.256	0.123
· þ.	'p'	11	0.101	0.043	16.051	0.139
		12	-0.242	-0.263	20.690	0.055
· 🗖		13	0.332	0.139	29.613	0.005
그 티 그	' ''	14	-0.155	0.083	31.609	0.005
	'4'	15	-0.014	-0.033	31.626	0.007
		16	0.009	0.037	31.633	0.011
	1 1 1 1	17	-0.043	-0.022	31.797	0.016
	' '	18	-0.011	-0.082	31.808	0.023
	'티'	19	0.022	-0.137	31.853	0.032
· p ·	1 1 1 1	20	0.081	-0.022	32.477	0.038
		21	-0.024	0.076	32.532	0.052
	ן ימי	22	-0.037	-0.065	32.667	0.067
· þ ·	ן יףי	23	0.025	0.062	32.730	0.086
1 1	1 1 1 1	24	-0.004	0.017	32.732	0.110
· 🗖 '	'=' '	25	-0.165	-0.167	35.661	0.077
· 🖻 ·	'티'	26	0.163	-0.152	38.589	0.053
1 1	ן ימי	27	0.006	-0.058	38.594	0.069
I I		28	-0.007	0.007	38.599	0.088

Figure 3: Correlogram of difference of confirmed cases

Table 3: Estimation of ARIMA model for the difference of confirmed cases

Dependent Variable: DDCOVID Method: Least Squares Date: 07/05/20 Time: 05:51 Sample: 3 64 Included observations: 62 Convergence achieved after 46 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) AR(12) MA(1) MA(13) MA(14) SIGMASQ	0.039049 -0.050128 -0.744949 0.348918 -0.368165 15833.89	0.200023 0.173767 0.154957 0.185932 0.150161 2767.697	0.195224 -0.288480 -4.807473 1.876595 -2.451806 5.720963	0.8459 0.7740 0.0000 0.0658 0.0174 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.448331 0.399075 132.4023 981701.3 -389.2014 1.972650	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		5.790323 170.7991 12.74843 12.95428 12.82925

This is a SARIMA(0, 1,1)X(0, 0,1)¹³ model. A more specific estimation of the above-mentioned model is done on Figure 4 to have the model

 $\nabla X_t = -0.7331\varepsilon_{11} + 0.3503\varepsilon_{13} - 0.3779\varepsilon_{14} + \varepsilon_1$ which is a SARIMA(0, 1, 1)x(0,0, 1)13 model for the confirmed cases of coronavirus in Nigeria.

CONCLUSION

The daily confirmed cases of coronavirus in Nigeria have been shown to show a SARIMA(0, 1, 1)x(0,0, 1)13 model. This model may be used to approximate its daily variation. Any study of the series may be based on this model.

Table 4: More specific Estimation of a SARIMA(0,1,1)x(0, 0, 1)13 model for the confirmed cases

Dependent Variable: DDCOVID Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 07/05/20 Time: 06:24 Sample: 3 64 Included observations: 62 Convergence achieved after 35 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
MA(1)	-0.733143	0.088343	-8.298805	
MA(13)	0.350301	0.170952	2.049119	0.0450
MA(14)	-0.377918	0.138582	-2.727031	0.0084
SIGMASQ	15839.22	2763.845	5.730863	0.0000
R-squared	0.448146	Mean depen	5.790323	
Adjusted R-squared	0.419602	S.D. depend	170,7991	
S.E. of regression	130.1214	Akaike info criterion		12.68608
Sum squared resid	982031.5	Schwarz criterion		12.82332
Log likelihood	-389.2685	Hannan-Quinn criter.		12.73996
Durbin-Watson stat	1.941012			
Inverted MA Roots	.92	.88+.29i	.8829i	.6864i
	.68+.64i	.3188i	.31+.88i	1293i
	12+.93i	5477i	54+.77i	83+.43i
	8343i	94		

REFERENCES

- Adams, S. O. and Bamanza, M. A. (2020). Modeling and Forecasting Seasonal Behavior of Rainfall in Abuja, Nigeria; A SARIMA Approach. American Journal of Mathematics and Statistics, 10(1): 10 – 19.
- Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis, Forecasting and Control, Holden Day, San Francisco.
- Ehanire, O. (2020). First Case of Coronavirus Disease Confirmed in Nigeria. Nigerian Centre for Disease Control. <u>https://ncdn.gov.ng</u> accessed 01/07/2020.
- Etuk, E. H. (2013). Seasonal Arima Modelling of Nigerian Monthly Crude Oil Prices. Asian Economic and Financial Review, 3(3): 333 – 340.
- Gamel, A. B. (2020). Using Mathematics to Understand and Control the 2019 Novel Coronavirus Pandemic. <u>https://www.thisdaylive.com/index.php/2020/05/03/using-mathematics-to-</u> understand-and-control-the-2019-novel-cornavirus-pandemic/ accessed 08/06/2020.

- Mwanza D., Ong'ala, J. and Orwa, G. (2017). Modelling Suzarcane Yields in the Kenya Suzar Industry: A SARIMA MODEL forecasting Approach. International Journal of Statistics and Applications, 7(6): 280 – 288.
- Ukoh, E. (2020). Nigeria makes breakthrough on Covid-19 cure. <u>https://www.von.gov.ng/nigeria-</u> makes-breakthrough-on-covid-19-cure/ accessed 07/07/2020.

APPENDIX

Cumulative daily laboratory confirmed cases of Coronavirus in Nigeria (starting from 3 May 2020) read row wise 9855 10162 10578 10819 11166 11516 11844 12233 12486 22020 22614 23298 24077 24567 25133 25694 26484 27110 27564 27564 28167 Source: NCDC Cornavirus COVID-19 Microsite <u>http://covid19.ncdc.gov.nc/</u>