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ABSTRACTABSTRACTABSTRACTABSTRACT    
In this research, an evaluation of the relationship between finite and infinite leg models 
variable were considered using ARMA approach. The method made use of descriptive 
statistics, augmented dickey fuller test, histogram, and correlogram techniques to check the 
presence of least significant values in order to select and fit the best model. The statistical 
Software packages used are Microsoft Excel and Eviews 8 version. The assessment criteria 
for the analysis were based on the ARMA test approach with Akaike Information 
Criterions (AIC) and Schwarz Information Criterions (SIC) measures to select the least 
significant value and to make decision. 

        
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    
A distributeddistributeddistributeddistributed----lag model lag model lag model lag model is a dynamic model in which the effect of a regressor 
x on y occurs over time rather than all at once. In the simple case of one 
explanatory variable and a linear relationship, we can write the model where 
ut is a stationary error term.1 This form is very similar to the infinite-moving-
average representation of an ARMA process, except that the lag polynomial 
on the right-hand side is applied to the explanatory variable x rather than to a 
white-noise process ε. The individual coefficients βs are called lag weights lag weights lag weights lag weights and 
the collectively comprise the lag distributionlag distributionlag distributionlag distribution and they define the pattern of 
how x affects y over time.  
        
THEORETICAL FRAME ANDLITERATURE REVIEWTHEORETICAL FRAME ANDLITERATURE REVIEWTHEORETICAL FRAME ANDLITERATURE REVIEWTHEORETICAL FRAME ANDLITERATURE REVIEW    
We cannot, of course, estimate an infinite number of β coefficients without 
paring the lag to finite length q, which is appropriate if the lag distribution is 
effectively zero beyond q periods. Another approach is to use a functional form 
that allows the lag distribution to decay gradually to zero. This also explain 
that a stationary autoregressive process can be expressed as an infinite moving 
average with declining lag weights, so a form with one or more lags of y on the 
right-hand side will allow infinite-length lag distributions while requiring 
estimation of only a small number of parameters.  
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One difficulty that is common to all distributed-lag models is the choice of lag 
length, to check whether this can choose the point q at once in order to pair a 
finite lag distribution or choose how many lagged dependent variables to be 
included. From the following discussion above, we can presume that the 
estimated coefficients of the following Distributed Lag model is given as: 
           
Yt= β0 xt + β1 xt-1 + β2 xt-2 + ....... + βn x t-n + ut. where    t = 1, 2, ...., T.       (1) 
Hence we call this a "finite" Distributed Lag model if the value of n is finite.  
From the above assumption, an intercept can be added into the model or add 
other regressors to expand the equation. Since the giving model above appears 
to be simple regression, we’ll presume that the error term, ut, satisfies all of the 
usual assumption. If the maximum lag length in the model, n, is much less 
than T, then we could just apply OLS to estimate the regression coefficients. 
However, even if this is achievable, in the sense that there are positive degrees 
of freedom, this may not be the smartest way in which to proceed. For most 
economic time-series, where x happens to be the successive lags among 
variables with high correlation with each other. Predictably, this the reasons 
why x variables results are quite simple and useful in multicollinearity 
equations. 
 
In response, Shirley Almon (1965) suggested a pretty neat way of re-
formulating the model prior to its estimation. She made use of Weierstrass's 
Approximation Theorem, which tells us (roughly) that: "Every continuous 
function defined on a closed interval [a, b] can be uniformly approximated, 
arbitrarily closely, by a polynomial function of finite degree, P." Notice that 
the theorem doesn't tell us what the value of P will be. This presents a type of 
model-selection problem that we have to solve. The flip-side of this is that if 
we select a value for P, and get it wrong, then there will be model miss-
specification issues that we have to face. In fact, we can re-cast these issues in 
terms of those associated with the incorrect imposition of linear restrictions on 
the parameters of our model. 
 
Dynamic Effects of Temporary and Permanent Changes Dynamic Effects of Temporary and Permanent Changes Dynamic Effects of Temporary and Permanent Changes Dynamic Effects of Temporary and Permanent Changes     
In cross-sectional models, we often used econometric methods to estimate the 
marginal effect marginal effect marginal effect marginal effect of an independent variable x on the dependent variable y, 
holding all of the other independent variables constant: . In time-series models, 
we must consider not only dy \ dx but also assume that yt does not depend on 
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future values of x, thus we exclude negative values of y from the summation. 
However, it is theoretically possible to have negative lags from the right-hand 
side of the equation. For example, in real life situation, if law is given to people 
at a particular period of time, they may want to obey the law irrespective of 
the consequence in order to live in peace but with time, they might change their 
behavior if they know the law is going to change in the future. 
    
METHODOLOGYMETHODOLOGYMETHODOLOGYMETHODOLOGY 
Determining lag length by statistical significance Determining lag length by statistical significance Determining lag length by statistical significance Determining lag length by statistical significance     
An observable way to choose the length of a lag is to start with a long lag, test 
the statistical significance of the coefficient at the longest lag. Since the 
“irregular lag” shortens the lag by one period it cannot reject the null 
hypothesis with the effect at the longest lag when the lag is zero. If this 
happens, it will continue to shorten the lag until the irregular lag coefficient is 
statistically significant.  
 
Although this method has applications, and there are dangers as well.  We can 
simply recall that an insignificant t -statistic on the irregular lag only fails to 
reject the hypothesis of a zero coefficient; it does not prove that the coefficient 
is zero! It is therefore quite possible that this procedure will choose a lag length 
that is too short. An alternative that also relies on statistical tests of 
significance is to start with a very short lag and successively add lag terms, 
continuing to add lags that are statistically significant and discontinuing 
when the marginal lag coefficient is not.  
    
Determining Lag Length by Information Criteria Determining Lag Length by Information Criteria Determining Lag Length by Information Criteria Determining Lag Length by Information Criteria     
Information criteria are considered to portion the amount of information about 
the dependent variable contained in a set of regressors. They are goodness-of-
fit measures of the same type as R2 , but without the appropriate explanation 
as share of variance explained that we give to R2 in an Ordinary Least Square 
Regression with an intercept term. The two most commonly used criteria are 
the Akaike information criterion (AIC) Akaike information criterion (AIC) Akaike information criterion (AIC) Akaike information criterion (AIC) and the Schwartz/Bayesian inSchwartz/Bayesian inSchwartz/Bayesian inSchwartz/Bayesian in----
formation criterion (SBIC)formation criterion (SBIC)formation criterion (SBIC)formation criterion (SBIC). They are usually calculated in log form by the 
formulas R2 
 
But the “main ingredient” in both information criteria is the sum of squared 
residuals, which we want to make as small as possible. Thus, we minimize the 
criteria and choose the model with the smallest AIC or SBIC value for the 
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equation. Hence, when using the information criteria to choose lag length, we 
must be very careful to make sure that all candidate models among which we 
are choosing are estimated exactly over the same sample period. This also 
requires particular caution in lag models because there are usually more 
observations available for models with shorter lags (because with fewer lags 
we “lose” fewer observations at the beginning of the sample). The first term of 
the information criteria (common to both) is the log of the standard error of the 
estimate (SEE), uncorrected for degrees of freedom which measures the 
accurate Distributed-Lag Models (DLM). 
 
Models wModels wModels wModels with lagged dependent variables ith lagged dependent variables ith lagged dependent variables ith lagged dependent variables     
The autoregressive-moving-average (ARMA) time-series is a process by 
which we model univariate time series. The autoregressive component of the 
ARMA model involves using one or more lagged values of y as determinants 
of the current value yt. We can apply the same method in a distributed-lag 
context by adding yt – 1 and possibly additional lags to the right-hand side 
introduces us into the simplest model called “Koyck lagKoyck lagKoyck lagKoyck lag””””, which has one lag of 
y on the right-hand side with only the current value of x and the additional 
lagged values of x in addition to lagged values of y variables which leads to 
the rational lag rational lag rational lag rational lag model.     
 
The first-order autoregressive lag model is often called the Koyck lag in 
recognition of the seminal application of the model to the macroeconomic 
investment function by L. M. Koyck (1954). With a single explanatory variable 
x, the model is written  
Yt = δ + ������+���� + 	�.        (2) 
 
Estimation of equation presents challenges because yt – 1 is by definition not 
strictly exogenous and, unless ut is white noise, then ,is not even weakly 
exogenous. In terms of the lag operator, we can write equation (2) as  
(1 − ɸ� �)�� = �+���� + 	�       (3) 
Where equation (3) suggests that solving the model for yt gives  

��
�

��ɸ��
+ 

��

��ɸ��
�� +

�

��ɸ��
	� ,       (4) 

which, by the methods of analogous used to examine autoregressive processes, 
can be written in an infinite-distributed-lag form as:  
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�
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as long as . |ɸ�|<1 
Equation (4) has the form of the infinite distributed lag (2), with  

 =  
�

��ɸ�
          (6) 

!� = ��ɸ�
�.            (7) 

and the disturbance term having an infinite-moving-average form. 
 
Longer Autoregressive Lags Longer Autoregressive Lags Longer Autoregressive Lags Longer Autoregressive Lags     
The Koyck lag treats y as a first-order autoregressive process. Although one 
lag of the dependent variable is often enough to capture the dynamic 
relationship between y and the regressors. However, the longer autoregressive 
lags can be included as well. Where the general auto-regressive lag model AR 
(p) would be written  
ɸ(L)�� =  � + ���� + 	�,       (8)  
with ɸ(L), a p-order polynomial in the lag operator.    
 
In order for the relationship between y and x to be dynamically stable, the roots 
of ɸ(L) must lie outside the unit circle. This generalizes the condition |ɸ1| < 
1 from the Koyck lag model. If the stability condition does not hold on the 
Distributed-Lag Models then a one-time change in x will cause permanent or 
explosive changes in y, which suggests differencing y to make the order of 
integration the same on both sides of the equation. 
 
    DATA PRESENTATIONDATA PRESENTATIONDATA PRESENTATIONDATA PRESENTATION    AND RESULTS DESCRIPTIONAND RESULTS DESCRIPTIONAND RESULTS DESCRIPTIONAND RESULTS DESCRIPTION    
These research emphases on the extents of which finite and infinite lag model 
can be regressed through the means of time series analysis which employed the 
use of a software program call Eviews 8 with a total data sets of 360 sample 
size. The values of the performance was calculated as to find: 

i.i.i.i. The model that adequately describes the data    
ii. The model that does not adequately describe the data 

iii. The correlation relationship of four variables and select the best fitted 
model  

    
The Procedure for Data AnalysisThe Procedure for Data AnalysisThe Procedure for Data AnalysisThe Procedure for Data Analysis    
This section is divided into various parts; 
Descriptive statistics of the Part, Comparison of the estimated models 
parameters, the graph and the criterion values consideration for model 
selection. 
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Descriptive statisticsDescriptive statisticsDescriptive statisticsDescriptive statistics    
Figure Figure Figure Figure 1111: Is : Is : Is : Is the time plot of a finite and infinite lag models of monthly average 
exchange rate moments at various segments of the market for 2006 – 2015    
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Table Table Table Table 1: Descriptive Statistics of dependent and independent variables1: Descriptive Statistics of dependent and independent variables1: Descriptive Statistics of dependent and independent variables1: Descriptive Statistics of dependent and independent variables 
Dependent Variable: Y   
Method: Least Squares   
Date: 07/16/19   Time: 22:31   
Sample: 2005M01 2014M12   
Included observations: 119   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 6.286469 5.464118 1.150500 0.2523 
X1 0.868757 0.053711 16.17477 0.0000 
X2 0.089281 0.046399 1.924194 0.0568 
     
     R-squared 0.838191     Mean dependent var 137.8218 
Adjusted R-
squared 0.835401     S.D. dependent var 15.62209 
S.E. of regression 6.338006     Akaike info criterion 6.555892 
Sum squared resid 4659.757     Schwarz criterion 6.625954 

Log likelihood -387.0756 
    Hannan-Quinn 
criter. 6.584342 

F-statistic 300.4469     Durbin-Watson stat 1.840166 
Prob(F-statistic) 0.000000    
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Table Table Table Table 2222: : : : Is the Estimation Command of the three variables:Is the Estimation Command of the three variables:Is the Estimation Command of the three variables:Is the Estimation Command of the three variables:    
======ss=================== 
LS Y C X1 X2 
 
Estimation Equation: 
========================= 
Y = C(1) + C(2)*X1 + C(3)*X2 
 
Substituted Coefficients: 
========================= 
Y = 6.28646865379 + 0.868757350492*X1 + 0.0892805856209*X2 

    
Table 3:Table 3:Table 3:Table 3:    Augmented Dickey Augmented Dickey Augmented Dickey Augmented Dickey ––––    Fuller Test StatisticsFuller Test StatisticsFuller Test StatisticsFuller Test Statistics    
 
Null Hypothesis: Y has a unit root  
Exogenous: Constant   
Lag Length: 1 (Automatic - based on AIC, maxlag=12) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -5.324300  0.0000 

Test critical 
values: 1% level  -3.486551  
 5% level  -2.886074  
 10% level  -2.579931  
     
     *MacKinnon (1996) one-sided p-values.  
     
     
Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(Y)   
Method: Least Squares   
Date: 07/16/19   Time: 22:23   
Sample (adjusted): 2005M03 2014M12  
Included observations: 118 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     Y(-1) -0.588953 0.110616 -5.324300 0.0000 
D(Y(-1)) -0.189621 0.091675 -2.068410 0.0408 
C 82.42700 15.57843 5.291100 0.0000 
     
     R-squared 0.385987     Mean dependent var 0.211695 
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Adjusted R-
squared 0.375308     S.D. dependent var 30.07996 
S.E. of regression 23.77444     Akaike info criterion 9.200194 
Sum squared resid 65000.75     Schwarz criterion 9.270635 

Log likelihood -539.8114 
    Hannan-Quinn 
criter. 9.228795 

F-statistic 36.14615     Durbin-Watson stat 1.306917 
Prob(F-statistic) 0.000000    
     
      
Figure Figure Figure Figure 2222::::    CorreCorreCorreCorrelation of Finite and Infinite Lalation of Finite and Infinite Lalation of Finite and Infinite Lalation of Finite and Infinite Lag Modelg Modelg Modelg Modelssss            
Date: 07/03/20   Time: 22:44    
Sample: 2005M01 2014M12      
Included observations: 119     
       
       

Autocorrelation 
Partial 
Correlation  AC   PAC 

 Q-
Stat  Prob 

       
              .|******|        .|******| 1 0.834 0.834 84.786 0.000 
       .|******|        .|**    | 2 0.766 0.232 156.94 0.000 
       .|***** |        .|.     | 3 0.695 0.039 216.86 0.000 
       .|****  |        .|.     | 4 0.611 -0.064 263.63 0.000 
       .|****  |        .|.     | 5 0.531 -0.058 299.25 0.000 
       .|***   |        .|.     | 6 0.450 -0.060 325.01 0.000 
       .|***   |        .|.     | 7 0.382 -0.009 343.79 0.000 
       .|**    |        .|.     | 8 0.321 -0.002 357.16 0.000 
       .|**    |        .|.     | 9 0.258 -0.030 365.91 0.000 
       .|*     |        .|.     | 10 0.200 -0.037 371.16 0.000 
       .|*     |        .|.     | 11 0.164 0.035 374.75 0.000 
       .|*     |        .|*     | 12 0.152 0.092 377.86 0.000 
       .|*     |        *|.     | 13 0.106 -0.077 379.39 0.000 
       .|.     |        *|.     | 14 0.066 -0.072 379.99 0.000 
       .|.     |        .|.     | 15 0.028 -0.054 380.10 0.000 
       .|.     |        .|.     | 16 -0.004 -0.017 380.10 0.000 
       .|.     |        .|.     | 17 -0.037 -0.018 380.29 0.000 
       *|.     |        .|.     | 18 -0.072 -0.033 381.04 0.000 
       *|.     |        .|.     | 19 -0.101 -0.026 382.52 0.000 
       *|.     |        *|.     | 20 -0.147 -0.094 385.65 0.000 
      **|.     |        *|.     | 21 -0.207 -0.132 391.97 0.000 
      **|.     |        .|.     | 22 -0.236 0.020 400.21 0.000 
      **|.     |        *|.     | 23 -0.304 -0.146 414.06 0.000 
      **|.     |        .|.     | 24 -0.341 -0.045 431.64 0.000 
     ***|.     |        .|.     | 25 -0.356 0.044 451.03 0.000 
     ***|.     |        .|.     | 26 -0.385 -0.036 474.02 0.000 
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     ***|.     |        .|.     | 27 -0.404 -0.036 499.52 0.000 
     ***|.     |        .|.     | 28 -0.417 -0.036 527.03 0.000 
     ***|.     |        .|.     | 29 -0.426 -0.040 556.07 0.000 
     ***|.     |        .|.     | 30 -0.424 -0.022 585.15 0.000 
     ***|.     |        .|.     | 31 -0.411 0.000 612.81 0.000 
     ***|.     |        .|.     | 32 -0.393 0.020 638.35 0.000 
     ***|.     |        .|.     | 33 -0.366 0.026 660.79 0.000 
      **|.     |        .|.     | 34 -0.328 0.026 679.02 0.000 
      **|.     |        .|.     | 35 -0.306 -0.007 695.07 0.000 
      **|.     |        .|.     | 36 -0.264 0.039 707.20 0.000 
       
        
Figure 3:Figure 3:Figure 3:Figure 3:    Is the differencing graph of the three variablesIs the differencing graph of the three variablesIs the differencing graph of the three variablesIs the differencing graph of the three variables 
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Table Table Table Table 5555::::    Is the Gradients of the Three Variables:Is the Gradients of the Three Variables:Is the Gradients of the Three Variables:Is the Gradients of the Three Variables:    
Gradients of the Objective Function 
Gradients 
evaluated at 
estimated 
parameters    
Equation: UNTITLED  
Method: Least Squares  
Specification: Y C X1  X2  
    
    

Variable Sum    Mean    
Weighted 
Grad. 

    
    C 3.42E-12 2.88E-14 2.42E-16 
X1 -5.01E-10 -4.21E-12 -2.10E-24 
X2 -1.49E-09 -1.25E-11 -1.86E-22 
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Table Table Table Table 6666::::    Is the Derivatives of the Three Equation SpecificationIs the Derivatives of the Three Equation SpecificationIs the Derivatives of the Three Equation SpecificationIs the Derivatives of the Three Equation Specification    
Derivatives of the Equation Specification 
Equation: UNTITLED 
Method: Least Squares 
Specification: RESID = Y - (C(1) + C(2)*X1 + C(3)*X2) 
  
  Variable  Derivative of Specification 
  
  C(1) -1 
C(2) -x1 
C(3) -x2 
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Figure Figure Figure Figure 4444: : : : Is the derivatives of the equation specification graph of the three Is the derivatives of the equation specification graph of the three Is the derivatives of the equation specification graph of the three Is the derivatives of the equation specification graph of the three 
variablesvariablesvariablesvariables    
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Figure Figure Figure Figure 5555::::    Is the serial residuals histogram of the three variables.Is the serial residuals histogram of the three variables.Is the serial residuals histogram of the three variables.Is the serial residuals histogram of the three variables. 
 
RESULTS AND DISCUSSIONRESULTS AND DISCUSSIONRESULTS AND DISCUSSIONRESULTS AND DISCUSSION    
The analysis of this research work was carried out with the use of three 
different samples in order to examine if there is a relationship or interception 
between the finite and infinite lag models also to check the decrease or increase 
exist between then with the aid of 320 sample variables. Finally, we further 
investigate the best suitable fitted model for the analysis.  
    
Explanation of the Time Plot of the FExplanation of the Time Plot of the FExplanation of the Time Plot of the FExplanation of the Time Plot of the Finite and Infiniinite and Infiniinite and Infiniinite and Infinite Lag Models  te Lag Models  te Lag Models  te Lag Models      
First of all, a time series plot of the finite and infinite were plotted to check thFirst of all, a time series plot of the finite and infinite were plotted to check thFirst of all, a time series plot of the finite and infinite were plotted to check thFirst of all, a time series plot of the finite and infinite were plotted to check the e e e 
presence of trend if figure presence of trend if figure presence of trend if figure presence of trend if figure 1111. This was important because it helps to detect if 
there is any traditional components of a time series such as trend, stationality, 
constant mean and constant variance exhibited by the data. From the graph, 
it displays non- stationary of the time plot of a finite and infinite lag models 
of monthly average exchange rate moments at various segments of the market 
for 2006 – 2015.    
    
Test for StationaryTest for StationaryTest for StationaryTest for Stationary 
 It is interesting to see from the figure that there is inconsistent variation of 
values between the three variables. We further difference the data for 
stationary purpose. 
Figure 3: Figure 3: Figure 3: Figure 3: Shows the stationary time plot as a result of the first differencing 
graph of the three variables and it was notice that the first differencing enabled 
the time plot graph to have stationary at the different time lags.      
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Correlogram of the ResidualsCorrelogram of the ResidualsCorrelogram of the ResidualsCorrelogram of the Residuals    
In figure 3, is the correlogram of the three variable residuals. Appearance of 
these residuals shows that they are correlated. 
 
Model Selection of Akaike Information Criterion (AIC) and Schwarz Model Selection of Akaike Information Criterion (AIC) and Schwarz Model Selection of Akaike Information Criterion (AIC) and Schwarz Model Selection of Akaike Information Criterion (AIC) and Schwarz 
Information Criterion (SIC) ValueInformation Criterion (SIC) ValueInformation Criterion (SIC) ValueInformation Criterion (SIC) Value    
    
The models were estimated from the analysis of the various variables above 
and the following values of Akaike Information Criterion (AIC) and Schwarz 
Information Criterion (SIC) were estimated as:  
Akaike InformationAkaike InformationAkaike InformationAkaike Information    Criterion (AIC) = 6.555892 and Criterion (AIC) = 6.555892 and Criterion (AIC) = 6.555892 and Criterion (AIC) = 6.555892 and SchwarSchwarSchwarSchwarz Information z Information z Information z Information 
Criterion (SIC) = 6.625954Criterion (SIC) = 6.625954Criterion (SIC) = 6.625954Criterion (SIC) = 6.625954    
    
The Correlogram of Model Selection of ACF and PACF ValueThe Correlogram of Model Selection of ACF and PACF ValueThe Correlogram of Model Selection of ACF and PACF ValueThe Correlogram of Model Selection of ACF and PACF Value    
From the correlogram in figure 2, which indicate a spike at lag one, two and 
three of the ACF suggested a moving average model order one, two and three 
MA (1, 2 and 3) as it continued to diminished and latter begins again from the 
middle of the figure to infinity. In addition, there was another spike notice at 
lag    one of the PACF which suggest the presence of an autoregressive one of the PACF which suggest the presence of an autoregressive one of the PACF which suggest the presence of an autoregressive one of the PACF which suggest the presence of an autoregressive 
component of order one AR (1) acomponent of order one AR (1) acomponent of order one AR (1) acomponent of order one AR (1) and a tapering pattern to zero in correlogram.nd a tapering pattern to zero in correlogram.nd a tapering pattern to zero in correlogram.nd a tapering pattern to zero in correlogram.    
    
Fitted Model Fitted Model Fitted Model Fitted Model     
Let the estimated coefficients of the following Distributed Lag model be given 
as:  
     Yt= β0 xt + β1 xt-1 + β2 xt-2 + ....... + βn x t-n + ut          ;         t = 1, 2, ...., T.    
 
Then we call this a "finite" Distributed Lag model if the value of n is finite.  
    Where Where Where Where     
Yt = C(1) + C(2)*X1 + C(3)*X2 
Substituted Coefficients as: 
Yt = 6.28646865379 + 0.868757350492*X1 + 0.0892805856209*X2 + ……+ 
βn x t-n  
    
SUMMARYSUMMARYSUMMARYSUMMARY    
The study estimated four models and selected the best fitted model with 
minimum Akaike Information Criterion (AIC) and Schwarz Information 
Criterion (SIC). Also, the Unit Root Test, Residual Plot of Correlogram and 
Histogram were check and the unit root test or Augmented Dickey-fuller test 
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were observed to ascertain stationary of the time series while the residual plot 
of correlogram and histogram indicate or proved the adequate model. 
 
CONCLUSSIONCONCLUSSIONCONCLUSSIONCONCLUSSION    
Significantly, the researcher was able to identify a suitable parameter for the 
finite and infinite leg model using Autoregressive model of order one AR (1) 
and Moving Average model of order one MA (1) as the best fitted model. It 
also showed that there exists a normal distribution in the residual plot which 
indicate that the model is adequate and affirm the existence of correlation of 
leg model. 
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