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ABSTRACT 

Mathematical model for monitoring diabetic populations with minor and major complications are developed and analyzed in this work. 

The equilibrium point of the system is shown to be globally asymptotically stable (GAS) using direct Lyapunov method. Some numerical 

simulations are carried out to demonstrate the analytical results. It is found that the prevalence/incidence of diabetes is on the rise. Our 

results are effective in monitoring diabetic populations with minor and major complications. The model can be used to monitor global 

diabetic populations over time. 
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INTRODUCTION 

Diabetes is a disorder of metabolism caused by total (or relative) absence of insulin which manifests clinically as 

an elevated blood glucose. The disorder is usually due to a combination of hereditary and environmental causes 

[40], resulting in abnormally high blood sugar levels known as hyperglycemia. No one is certain as to what starts 

the processes that cause diabetes [32]. But scientists believed that genes and environmental factors interact to cause 

diabetes in most cases [32]. The prevalence of the disease is steadily increasing everywhere, most markedly in the 

world’s middle-income countries. Unfortunately, effective policies to create supportive environment for diabetic 

patients are not obtainable in most society. Pursuing such policies is important. This is because when diabetes is 

uncontrolled, it has dire consequences for health and well-being of the society [13]. 

 

Initially, diabetes was considered as a disease with less harm to the society. But in the last few years there has been 

an alarming increase in the number of people diagnosed with the disease. Report released by World Health 

Organization (WHO) in 2003 [37] showed that 194 million people were diabetic globally. This represents a global 

prevalence exceeding three percent of the world’s population. The recent report [38] put the estimated number of people 

with diabetes at 422 million (representing number of diabetic patients as of 2014). Comparing with 108 million 

and 194 million in 1980 and 2003 respectively, one can see that the prevalence of the disease has multiplied four 

times from 1980. Out of this number, 1 person dies every 6 seconds, totaling approximately 5.3 million deaths 

annually [41]. The ten countries estimated to have the highest number of diabetes in 2000 and 2030 are listed in 

Table 1 below as presented in [39]. 

 

 

 

 

Table 1:  Top ten countries to have highest number of diabetes in 2000 and 2030 [39] 

2000 2030 

Ranking Country People with 

diabetes (in 

millions 

Country People with 

diabetes (in 

millions 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

India 

China 

U.S 

Indonesia 

Japan 

Pakistan 

Russian 

Brazil 

Italy 

Bangladesh 

31.7 

20.8 

17.7 

8.4 

6.8 

5.2 

4.6 

4.6 

4.3 

3.2 

India 

China 

U.S 

Indonesia 

Pakistan 

Brazil 

Bangladesh 

Japan 

Philippines 

Eqypt 

79.4 

42.3 

30.3 

21.3 

13.9 

11.3 

11.1 

8.9 

7.8 

6.7 

 

Generally, two forms of diabetes are considered: type 1 diabetes, also known as Insulin Dependence Diabetes Mellitus 

(IDDM), typically occurs in children and young adults and it represents (10-15) % of the diabetic population, and 

type 2 diabetes formally known as Non-Insulin Dependence Diabetes Mellitus (NIDDM), represents the major part ( 

85-90 ) % [19]. However, there is third type called gestational diabetes which affects pregnant women and it goes 

away the moment pregnancy is over. Complications of diabetes are broadly classified into two; minor (acute) and 

major (chronic) complications [1]. Minor complications of the disease are very serious and have strong health 

implication. They are usually dangerous complications and are always medical emergency. They include; 

hyperglycaemia hyperosmolar state, diabetic coma, respiratory infections and periodental disease. On the other 

hand, major complications are those complications of disease that continues for a long time and are not easily 

cured. 

 

From the above statements, it is clear that diabetes aid in developing different kind of diseases. Thus, monitoring the 

size of the diabetic population is important. Different strategies can be adopted provided they yield the desired 

results. Our interest is to show that investment in primary health care is necessary and to convince policy makers 

that bold decisions must be taken for a sustainable development which ensures better quality of life and well-being 

for the present and future generations of human [13]. 

 

 Model Formulation 

Suppose that D = D(t),C1 = C1(t) and C2 = C2(t) (t > 0) represents the numbers of diabetic patients without 

complications, with minor complications and with major complications respectively, and let  

N = N(t)=D(t) + C1(t) + C2(t) denote the size of the population of diabetic patients at time t. Let I=I(t) denote the 

incidence of diabetes. 
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Figure 1: Schematic representation of the model 

A person may develop the disease without complications and develop complications with time or die naturally. A 

diabetic patient with minor complications may die naturally, die as a result of minor complications, develop 

major complications or have his/her complications cured. A diabetic patient with major complications may die 

naturally, as a result of the complications, have his/her blood normalized through some control measures and 

become diabetic patient without complications. On the basis of this, we have the following dynamics; the diagram 

above shows I=I(t) cases that are diagnosed in a time interval of length t and are assumed to have no complications 

upon diagnosis. In this same time interval, the number of diabetic patients without complications D=D(t) is seen to 

increase by the amount   C1 (those who recovered from minor complications) and γ2C2 (patients who recovered from 

major complications), and to decrease by µD (patients without complications who die naturally),   D (patients 

who develop minor complications) and   D (patients who develop major complications). During this same time 

interval, the number of diabetic patients with minor complications, C1=C1(t) is increased by   D (patients who 

develop minor complications) and decrease by µC1 (patients with minor complications who die naturally),   C1 

(patients who die as a result of the minor complications) and ηC1 (patients with minor complications who develop 

major complications). On the other hand, the number of diabetic patients with major complications increases by 

λ2D (patients who develop major complications) and ηC1 (patients with minor complications who develop major 

complications) and decreases by µC2, δ2C2, νC2, and γ2C2; patients with major complications who die naturally, 

patients who die as a result of major complications, patients who are severely disabled and are removed and patients 

who achieve glucose regulation respectively. 

  

 

 

 

 

These rates of change are formalized by the ordinary differential equations: 

 
  

  
   = −(λ1 + λ2 + µ)D + γ1C1 + γ2C2 + I, 

   

  
 = λ1D − (δ1 + η + γ1 + µ)C1, 
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 = λ2D + ηC1 − (δ2 + γ2 + µ + ν)C2. 

And since N=D + C1 + C2, the initial value problems (IVP) in term of C1, C2 and N are 

 
   

  
 = −(ξ + λ1)C1 − λ1C1 + λ1N, 

   

  
 = (η + λ1)C1 − (θ + λ2)C2 + λ2N,                                                                                         (1) 

  

  
  = − δ1C1 – ΛC2 − µN + I,        

 C1(0)=C10, C2(0) = C20, N(0) = N0, ξ = δ1 + γ1 + η + µ, θ=δ2 + γ2 + µ + ν, Λ=δ2 + ν, and C10, C20, N0 are the 

initial values of C1, C2 and N respectively. 

 

Table 2: Description of Variables for the Model (1) 

Variable        Description 

D(t) :               number of diabetic patients without complications, 

C1(t) :             number of diabetic patients with minor complications, 

C2(t) :             number of diabetic patients with major complications, 

N(t) :               total population of diabetic patients, 

  t:                   time as a continuous variable. 

The models are extensions of the models of diabetes considered in [13, 10] by subdividing the compartment for 

diabetic population with complications into two based on the classification of diabetic complications mentioned in 

[1]. 

 

 Basic Qualitative Properties of the Model 

Since the model (1) describes human population it is necessary to show that all the state variables C1, C2, N are 

nonnegative for all t ≥ 0. Solutions with positive initial data remain positive for all t ≥ 0 and are bounded. Based 

on biological consideration therefore, the model (1) will be studied in the region: 

Ω = {(C1, C2, N) ∈   
  : C1 ≥ 0, C2 ≥ 0, N ≤ Iµ}. 

 

Table 3: Parameters for the Model (1) 

Parameter        Description 

µ :                       natural death, 

λ1 :                      probability of developing minor complications, 

λ2 :                      probability of developing major complications, 

η :                        rate of developing major complications from minor complications, 

γ1 :                      rate of recovery from minor complications, 

γ2 :                      rate of recovery from major complications, 

δ1 :                      death induced by minor complications, 

δ2 :                      death induced by major complications, 

ν :                        rate of which diabetic patient with major complications become severely disabled, 

I :                         incidence of diabetes. 

 

Positivity and Boundedness of Solutions  

 

Lemma 2.1.  
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The region Ω is positively-invariant for the model (1) with non-negative initial conditions in   
   . 

 

Proof 

The system (1) is Lipschitz continuous in Ω, from the standard Theorem in[24], there exists a unique solution to 

(1). We use the method of contradiction as in[6, 26] to show that Ω is positively-invariant.  

 

Under the initial conditions, assume that there exists a first time t1 such that 

 

C1(t1) = 0,
         

   
 < 0, C2(t1) > 0, N(t1) > 0 for 0 < t < t1, 

 or there exists a t2 such that 

C2(t2) = 0, 
         

   
 < 0, C1(t2) > 0, N(t2) > 0 for 0 < t < t2. 

 

In the first case (t1):  
       

   
  = −λ1C2 + λ1N, 

        = λ1(N – C2), 

        > 0, 

which is a contradiction. Meaning C1(t) > 0. 

 

In the second case (t2):  
       

   
  = (η – λ2)C1 + λ2N, 

        = λ2N + ηC1 – λ2C1, 

        > 0, 

which is a contradiction. Meaning C2(t) > 0. 

 

Thus, in any case C1, C2 remain positive. Also, since N(t) ≥ C1(t) + C2(t) and 
  

  
    = −δ1C1 – ηC2 − µN + I, 

        ≤ I − µN, 

⇒  
  

  
 + µN ≤ I.                                                                                                       (2) 

That is to say 
  

  
 ≤ 0 if N ≥ µ I . Thus, N ≤ µ I (1 −     ) + N(0)     . In particular,N ≤ Iµ. 

Thus, the region Ω is positively-invariant. Further, if N(0) > Iµ then either the solution enters Ω in finite time, or 

N → Iµ asymptotically. 

Hence the region Ω attracts all solutions in   
 . 

 

Analysis of the Model 

In this linear model (1), the probabilities of developing minor and major complications, λ1 and λ2 will respectively 

be estimated to have constant values: 

                                                   λ1 = 
   

  
     , λ2 = 

   

  
    [13]                                                  (3) 

 

 Local Stability Analysis of the Equilibrium Point  

 

The linear model (1) has unique equilibrium point given by: 
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                 El =     
     

                 
   

             

                 
 
                         

                 
                 (4) 

A1= η(µ + Λ) + θ(δ1 + µ),  A2 = ξ(µ + Λ),  A3 = µθξ 

 

Lemma 1. 

The unique equilibrium point El of the model (1) is locally asymptotically stable (LAS). 

 

Proof 

The characteristic polynomial associated to the matrix A of the system (1) is generically 

given by 

                            , 

                              are the cofactors of the entries a11; a22; a33 respectively of the matrix A 

and   denote its eigenvalues. 

 

Thus, the characteristic polynomial for the system is given by 

              
                                                   (5) 

                              

                                                                   
For the system’s equilibrium point (4) to be stable, all the roots of the characteristic equation (eigenvalues) (5) must 

be negative. We apply Routh stability criterion to achieve that. For convenience, we restate the criterion. 

 

According to the Routh stability criterion, the necessary and sufficient conditions for asymptotic stability are that 

all the sign of the first column of the Routh table (as below) have the same sign. Thus, the Routh table for the 

polynomial is given as follows: 

                                                  

                                                   

                                                    

                                                   

  …                  …                    … 

   
               

    
        

               
    

    

   
             

  
           

             
  

     

If                    have same sign, then the fixed point is stable. 

Here, for this system, 

                                                      

We also obtained                             
Thus, the Routh table for the system is as follows: 

                                                                        

                                                        

                                                                                           

                                                                                           

  …                  …                    … 

 



 

7 | I J S A I R  

 

 International Journal of Science and Advanced Innovative Research  

ISSN:  2536-7315 (Print) 2536-7323 (Online) 

Volume 4, Number 4, December, 2019 

http://www.casirmediapublishing.com  

Since all the sign of the entries in the first column of the table are positive, then all the roots (eigenvalues) of the 

characteristic equation (5) are negative. 

 

Hence, the equilibrium point(4) of the system (1) is asymptotically stable. This result shows that the disease 

establishes itself within certain period of time, but can be controlled at certain level if proper measures are put in 

place. 

 

Global Stability analysis of the equilibrium point 

Having established that the equilibrium point in the linear case is locally asymptotically stable, we prove the global 

stability of this equilibrium point. to do this we employ the use of Lyapunov functional approach as in [7]. Let us 

introduce new variables 

 

u1 = C1 – C1
*, u2 = C2 – C2

*, u3 = N – N* and φ1 = I – I*,  ui = ui(t), i = 1,2,3, φ1 = φ1(t). 

 

Note that 

−(ξ + λ1) C1
* − λ1C2

* + λ1N* = 0, 

  (η – λ2) C1
*− (θ + λ2)C2

* + λ2N* = 0, 

−δ1C1
* − ΛC2

* − µN*+ I* = 0. 

With this change of variables, system (1) becomes 

 
   

   
    = −(ξ + λ1)u1 – λ1u2 + λ2u3, 

     

   
   = (η – λ2)u1 − (θ + λ2)u2 + λ2u3,                                                               (6) 

   

   
     = −δ1u1 – Λu2 − µu3 + φ1, 

The global stability of the origin (trivial equilibrium point) of (6) implies the global stability of the equilibrium 

point to the original system (1). 

 

Theorem 1.  

Suppose that (C1
*, C2

*, N*) is below or above (C1, C2, N) along the solution curves, the unique equilibrium point El is 

globally asymptotically stable in the region Ω if the following inequalities hold:  

η < λ2 and Λ > (1 + λ2). 

 

Proof 

Consider the Lyapunov function 

                                           V(u) =
 

 
        

  
 

 
   

    
                

where k is a positive constant to be determined later in the course of calculations, with Lyapunov derivative along the 

solution curves: 

              
    

       
      

          
 

  
, 

                            –                 –                      

                                 –                        –                 , 
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              . 

Now,         
      

     
                             

                       
      

     
                        , 

Clearly,          

Letting          gives   
        

     
        . 

Substituting k in             we have 

                                                
Thus, we have 

                                    
      

     
                             

     
      

     
                 

                                                        

 

Since, at any time, t the equilibrium point (C1*,C2*, N*) is either below or above (C1,  C2,  N) along the solution 

curves, then: either C1 - C1 *> 0; C2 - C2*> 0,  N – N* > 0 at a time or C1 - C1 *  0; C2 - C2*  0,  N – N*   

0. Whichever the case may be, u1u2 and u1u3 remain positive. And since g1 < 0,  g2 > 0,    > 0, g3 < 0, g4 < 0, 

therefore    < 0. 

 

Thus,    = 0, if and only if u1 = u2 = u3 = 0.This indicates that the largest invariant set in {(u1,u2,u3)∈

    = 0} is the origin. Therefore, by LaSalle’s invariance principle [27], El is globally asymptotically stable. 

This result shows that the disease establishes itself in a community. 

 

Numerical Simulation 

This section gives a demonstration of the analytical results in the previous sections. The parameter values are given 

in table 4. These parameter values were obtained from the source(s) indicated in each case. The global incidence of 

diabetes used in the simulations is I = 17000000. This incidence, is the average of incidences for three years (2012-

2014)[38] [16]. It should also be noted that the death as a result of minor complications of diabetes is slightly 

higher than that of major complications [38]. Parameter values that we were not able to obtain in the diabetes 

literature were assumed in the simulations. C1(0) = 500000, C2(0) = 600000, N(0) = 1500000 were used as 

initial conditions. The probabilities of developing minor and major complications were estimated to be λ1 = 0.33, λ2 

= 0.40, (in the linear case) using their definitions given in Subsection (3), while θ, ξ and Λ were obtained to be 

0.10729142, 0.09379427 and 0.05500572 respectively. With these values of the parameters, the equilibrium point is 

obtained to be:  (143270000, 191880000, 375880000) 

 

Table 4: Parameter values used in the numerical simulations 

Parameter       Value                      Source 

δ1                       0.007508574         Estimated from [29] 

δ2                       0.005005716         Estimated from [29] 

η                         0.03                         Assumed 

γ1                       0.042                       Adopted from [13] 

γ2                       0.038                       Adopted from [13] 

µ                         0.0142857                                       [26] 

ν                         0.05                         Adopted from[13] 
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The profiles for C1 (t), C2 (t) and N (t) are shown in figures 2. It can be seen from the figure that the fixed point was 

reached by time t = 100years. It also shows that there is an agreement between the analytical results and the 

numerical results. 

 

 
                                       Figure 2: Profile of C1, C2, N for the full model 

 

A situation where there is no recovery from the complications of the disease (that is γ1 = 0, γ2 = 0) is also 

experimented (see figure 3). The equilibrium point in this case is: (145530000, 194820000, 363230000) 
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                                             Figure 3: Profile of C1, C2 & N when there is no recovery 

 

Table 4: Parameter values used in the numerical simulations 

Parameter       Value                      Source 

δ1                       0.007508574         Estimated from [29] 

δ2                       0.005005716         Estimated from [29] 

η                         0.03                         Assumed 

γ1                       0.042                       Adopted from [13] 

γ2                       0.038                       Adopted from [13] 

µ                         0.0142857                                       [26] 

ν                         0.05                         Adopted from[13] 

 

 CONCLUSION 

This modified models (linear and the nonlinear) is an extension of Boutayeb et al model considered in [13] and 

[10]. This extension was done by subdividing the compartment of diabetic population with complications into those 

with minor complications and those with major complications. The extended model shows no any sign of divergence 

as time increases. In the linear model, a unique equilibrium point was obtained and is found to be globally 

asymptotically stable unconditionally by the use of direct Lyapunov function. The nonlinear has has three positive 

equilibrium points: EP 1, EP 2 and EP 3. EP 1 and EP 2 were found to be unstable. EP 3 is found to be globally 

asymptotically stable, which is equivalent to the endemic equilibrium point in infectious diseases. It is seen clearly 

that the absence of the complications of the disease in the population is not guaranteed. However, the central work of 

the dissertation is to stress the importance of controlling the incidence of the disease and its various complications. 

It is hitherto important that a better strategy must be put in place to curtail the menace of the disease. The overall 

results obtained is that the models can monitor diabetic population globally without any condition as to the choice 

of time of monitoring. In conclusion, we see that our models have given us insight into the various complications of 

diabetes. This gives a clear signal that health decision makers must invest heavily in health sector so that social and 

economic costs of uncontrolled diabetes in our societies will be minimal and productivity will be high. 
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Further Study 

Nonlinear consideration and analysis of the model can be investigated for more insight into the features or profiles 

of the model. Also, the effect of treatment of the complications of the disease can be investigated. 
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