Phytochemical Analysis and Antibacterial Efficacy of Leaf Extracts of *Nauclea latifolia* L.

Malami Y.G., Lawal F.B. & Garba S.T.
Department of Science Laboratory Technology
Umaru Ali Shinkafi Polytechnic, Sokoto, Nigeria

ABSTRACT: *Nauclea latifolia* is a valuable medicinal plant that is widespread in the humid tropical rainforest or in savannah woodland zone of West and Central Africa. Different parts of the plant possess remarkable therapeutic actions that can support the traditional usage of this plant in the treatment of several ailments. Phytochemical analysis and antibacterial efficacy of the leaf extracts were evaluated. Phytochemical analysis was carried out using standard procedure, the chemical ingredients detected were Flavonoids, Tannins, Saponins, Alkaloids, Steroids, Glycosides, Saponins glycosides, Volatile oils and absent of Cardiac glycosides, Balsam and Anthraquinones. Antibacterial efficacy of the leaf extract was also tested against certain strains of clinical isolates of *Salmonella typhi*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Streptococcus* spp using disc diffusion and broth dilution techniques. The antibacterial test results had indicated that, the test isolates were sensitive to the leaf extract of the plant with the highest efficacy against *Salmonella typhi* (33mm) at 200mg/ml, *Klebsiella pneumoniae* (40mm) at 200mg/ml, *Staphylococcus aureus* (11mm) at 200mg/ml, *Streptococcus* spp (14mm) at 200mg/ml and lowest activity at 25mg/ml. The extract found to showed strong inhibitory effect against the test isolates at higher concentration which was in dose dependent manner. The study had indicated that the leaf extracts of the plant has potential against microbial infections.

INTRODUCTION
African plants constitute a rich and still under explored source of natural products of potential medicinal interest. According to World Health Organization (WHO), an approximately 80% of world population relies on herbal preparations as their primary source of healthcare (Kumara, 2001). It was estimated that some 20,000 species of higher plants are used medicinally throughout the world (Tagboto and Townson, 2001). Millions of Africans rely on these herbal preparations for their primary health care (McCaleb, 2000). Plants have provided the basis for traditional treatment for different types of diseases such as cancer, liver diseases, diabetes, ulcer, bacterial infections, fungal infections, etc. and still offer an enormous potential source of new chemotherapeutic agents. Plant becomes a medicinal plant only when its biological activity has been ethno-botanically reported or scientifically established (Elujoba, 1995). Plants and their derived products from the outset have also served as veritable sources of food for humans and animals (Ogbonnia et al., 2011). *Nauclea latifolia* linn is belong to the family of *fabeceae* is a spreading, evergreen, multi-stemmed shrub or small tree native to tropical Africa and Asia (Gidado et al., 2005). *Nauclea latifolia* is a valuable medicinal plant that is widespread in the humid tropical rainforest zone or in savannah woodlands of West and Central Africa. It is known as African peach and may be used for traditional medicinal practices of the East and West African sub-regions of continental Africa (Dalziel, 1937) where various extracts of the plant are used for the therapeutic management of malaria (Gamaniel et al., 1997); hypertension (Akubue and Mittal, 1982); prolonged menstrual flow (Elujoba, 1995); cough, gonorrhea, stomach disorders, dysentery, ulcers and liver ailments (Traore et al., 2000). The research was designed to investigate the antibacterial efficacy of leaf extract of the plant against the tested clinical isolates.
MATERIALS AND METHODS

Sample Collection of Plant Material
Fresh leaves of the plant were collected from Zurur Emirate, Zuru Local Government of Kebbi State, Nigeria. It was botanically authenticated at the Herbarium Botany Unit, Department of Biological Sciences, Usman Danfodiyo University, Sokoto, Nigeria. A voucher specimen of the plant was deposited at the herbarium for referencing. The leaves were then air dried under shade, cut into a small pieces, grounded into a powder using mortar and pestle and kept in a container until required for analysis.

Preparation of plant extracts
Twenty five grams (25g) of the leaf powder of the plant was dissolved in 200ml of distilled water in 250ml conical flask and kept to settle for 24 hours. The extracts was filtered using Whatman’s Filter Paper (No. 1) and dried in an oven. The residue was reconstituted for phytochemical screening tests (Harbon, 1998).

Phytochemical Screening
The extract of the plant was used for phytochemical analysis after reconstitution with distilled water and concentrated to determine the secondary plant metabolites present in the plant material in accordance with methods of (Harbone, 1998; Sofowora 1991; El-Olemyl, 1994).

Preparation of Extract for Antibacterial Activity
The powdered leaf sample of Nauclea latifolia plant; 1.25, 2.5, 3.75 and 5g were used. The various grams were placed in a test tubes, 10ml of distilled water was added to each test tube to give different concentration of (25, 50, 100 and 200mg/ml) of the plant extract. The same concentration were also prepared for standard control (ciprofloxaxin 500mg).

Bacterial Culture
Isolates of bacteria Salmonella typhi, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus spp were obtained from Microbiology Laboratory of Department of Microbiology, College of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto State.

Antibacterial Test
The antibacterial tests of the leaf extracts of the plant was tested on the microbial isolates using disc diffusion method of (NCCLS, 2008). The grams of the leaf powder used for the preparation of various concentrations were 1.25, 2.5, 3.75, and 5g which were dissolved in 10ml of distilled water to give different concentrations of 25, 50, 100 and 200mg/ml respectively. Similar concentration of standard control (ciprofloxaxin drug) was prepared. Disc of variable concentrations of the prepared extract was incorporated into Mueller Hinton Agar medium and allowed to solidify. Sensitivity test was determined by the absence of growth on or around the plate. The plates were incubated at 37°C for 24h before observation and measurement of zone of inhibition.

RESULTS
The phytochemical analysis presented in table I had indicated that Nauclea latifolia leaf extract contains, the active secondary plant metabolites tested such as Flavonoids, Tannins, Saponins, Steroids, Alkaloids, Saponin glycosides, Volatile oils, Glycosides and the absence of Cardiac glycosides, Balsam and Anthraquinones.
Table I: Phytochemical constituents of leaf extract of *Nauclea latifolia* L.

<table>
<thead>
<tr>
<th>ALK</th>
<th>VO</th>
<th>TAN</th>
<th>GLY</th>
<th>SAP</th>
<th>CGS</th>
<th>STER</th>
<th>SGS</th>
<th>BAL</th>
<th>ATQ</th>
<th>FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
</tr>
</tbody>
</table>

Key: + = Presence
ND = Not detected

FLA = Flavonoids, TAN = Tannins, ALK = Alkaloids, SAP = Saponins, CGS = Cardiac glycosides, STER = Steroids, SGS = Saponins glycosides, BAL = Balsams, ATQ = Anthraquinones, VO = Volatile oils, GLY = Glycosides.

Antibacterial activity test of *N. latifolia*. Extract of *N. latifolia* had shown strong effect on the growth of all the clinical isolates tested at all concentrations, in a dose dependent manner with highest inhibitory activity at 200mg/ml for the isolates with lowest effect at 25mg/ml of *Salmonella typhi*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Streptococcus* spp as indicated in the table II below:

Table II: Antibacterial activity of leaf extract of *Nauclea latifolia*

<table>
<thead>
<tr>
<th>Plant part/control</th>
<th>Conc. (mg/ml)</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S. typhi</td>
</tr>
<tr>
<td>Leaf</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>33</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Standard control)</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>48</td>
</tr>
</tbody>
</table>

Key: - = No inhibition
 Value 1mm = inhibition

S. typhi = *Salmonella typhi*, *S. aureus* = *Staphylococcus aureus*, *S. spp* = *Streptococcus* spp, *K. pneumoniae* = *Klebsiella pneumoniae*.

DISCUSSION

The phytochemical analysis of *N. Latifolia* leaf extract had indicated the presence of some secondary plant metabolites tested such as alkaloids, tannins, glycosides, saponins, steroids, saponins glycosides flavonoids, volatile oils and absent of cardiac glycosides, balsam and anthraquinones, this is similar to the work reported by [Borrelli and Izzo, 2001; El-Mahmood et al., 2008; Ahuocha, 2010, Ogueke et al., 2011; Orale et al., 2013; Edet et al., 2013; Balogun et al., 2015; Onu et al., 2015]. The absent of anthraquinones and glycosides in this research disagreed with the find of [Borrelli and Izzo, 2001; El-Mahmood et al., 2008, Ahuocha, 2010; Ogueke et al., 2011; Orale et al., 2013; Edet et al., 2013; Balogun et al., 2015, Onu et al., 2015]. The secondary plant metabolites are the active principle that possesses pharmacological activity against the growth of certain microbial organisms [Balogun et al., 2015]. Antibacterial activity of the leaf extract of *N. Latifolia* leaf had shown strong inhibitory effect against the growth of the clinically test isolates in a dose dependent manner and this is similar to the find of [Lino and Deogracious, 2006; El-Mahmood et al., 2008; Ahuocha, 2010; Ogueke et al., 2011; Orale et al., 2013; Edet et al., 2013; Balogun et al., 2015, Onu et al., 2015]. The secondary plant metabolites are the active principle that possesses pharmacological activity against the growth of certain microbial organisms [Balogun et al., 2015]. Antibacterial activity of the leaf extract of *N. Latifolia* leaf had shown strong inhibitory effect against the growth of the clinically test isolates in a dose dependent manner and this is similar to the find of [Lino and Deogracious, 2006; El-Mahmood et al., 2008; Ahuocha, 2010; Ogueke et al., 2011; Orale et al., 2013; Edet et al., 2013; Balogun et al., 2015, Onu et al., 2015]. The secondary plant metabolites are the active principle that possesses pharmacological activity against the growth of certain microbial organisms [Balogun et al., 2015].
study had demonstrated some antibacterial properties of *N. latifolia* leaf extract that may serve in further study to investigate the actual structure and characterized the active principle tested for further pharmacological research.

CONCLUSION

Phytochemical analysis and antibacterial efficacy of the leaf extract of *N. Latifolia* had shown that, the plant possess pharmacological activity against the clinically test isolates of microbes which may be due to the presence of bioactive constituents of the plant.

REFERENCES

Ahuocha, P.A. (2010): Antimicrobial and phytochemical screening of *Nauclea latifolia*. A Dissertation Presented to the Department of Applied Microbiology and Brewing Nnamdi Azikwe University, Awka in Partial fulfilment for the Award of Master of Science in Applied Microbiology and Brewing.

National Committee for Clinical Laboratory Standard (2008): Performance Standards for antimicrobial susceptibility testing. Ninth informational supplement NCCLS documents M100-S9 NCCLS Wayne, P.A.

