Odu Vine Imerani & Didi Isaac Essi

Department of Mathematics, Rivers State University Port Harcourt, Nigeria **Email:** etuk.ette@ust.edu.ng **Corresponding Author:** Ette Harrison Etuk

ABSTRACT

The study models exchange rate volatility in Naira/Pounds sterling with a monthly data March, 2003 - May, 2017 extracted from Central Bank of Nigeria using a set of parameters for the error distribution except for the normal errors. From the analysis, the variable was stationary at first differencing with P-value less than 0.05. The presence of ARCH effect was confirmed and volatility estimated using GARCH family models with varying degrees of freedom for student-t error distribution, which controls the tail shape and also varying degrees of shape parameters for the generalized error distribution (GED). The shape parameters for the generalized error distribution (GED) was fixed at r = 1.0, 1.5 and 1.75 while student's-t error distribution, the degrees of freedom was fixed at r = 5, 10 and 15. The optimal model selected using Schwarz Information Criteria (SIC) of -3.816914. Recommendations were made based on the findings of the result.

INTRODUCTION

Exchange rate and its volatility have remained very key issues that influence economic activities in Nigeria. These hold numerous converse of interest from academic, financial economists, traders, investors and decision makers alike, especially ever since the fall of the Breton woods consensus of pegged exchange rates among major business nation (Suliman, 2012). Sequel to the adoption of market determined rates on the basis of demand and supply, there has been consistent greater variability in the prices of many currency indexes. Recently, researchers have introduced various models to clarify and vulnerabilities foresee these designs in instability. Among models these are the conditional autoregressive heteroskedasticity (ARCH) and the Generalized Autoregressive conditional heteroskedasticity (GARCH).

According to Musa et al., (2014), the ARCH model modeled the heteroskdasticity by relating conditional of the variance disturbance term to the linear contribution of the squared disturbances in the recent past. the Whereas universal conditional autoregressive heteroskedasticity (GARCH) model the constitutional variance as dependant of lagged standards and squared lagged standards of disturbance term (Musa et al, 2014). However, since the development of the two models various variance of above. GARCH model have been developed to model volatility. Some of which include the Exponential GARCH (EGARCH), Threshold GARCH (TGARCH), ARCH (PARCH) power etc. Hence, in view of the above the study model volatility in Naira/pounds stering in attempt to estimate exchange rate volatility as well as unifying model for estimating exchange rate volatility using GARCH family model.

LITERATURE REVIEW

Engle (1982), where it was shown that conditional heteroskedasticity can be modeled using an autoregressive conditional heteroskedasticity (ARCH) model. ARCH model relates the conditional variance of the disturbance term to the linear combination of the squared disturbance in the recent past.

Having realized the potentials of ARCH model, several research studies have used it to model financial time series. Determining the optimal lag length is cumbersome, oftentimes engender over parametrization. Rydberg (2000) argued that large lag values are required in ARCH models, thus the need for many parameters, this lead to the introduction of the GARCH model.

However, Bollerslve (1986) and Taylor (1986) independently proposed the extension of ARCH model with an Autoregressive Moving Average (ARMA) formulation, with a view to achieving parsimony. The model is called the Generalized ARCH (GARCH), which models conditional variance as a function of its lagged values as well as squared lagged values of the disturbance term. Although GARCH model has proven useful in capturing symmetric effect of volatility, but it is bedeviled with some limitations. Such as the violation of non-negativity constraints imposed the on parameters to be estimated.

To overcome these constraints, some extensions of the original GARCH model were proposed. This includes asymmetric GARCH family models such as Threshold GARCH (TGARCH) proposed by (1994), Zakoian Exponential GARCH (EGARCH) proposed by Nelson (1991) and Power GARCH (PGARCH) proposed by Ding et al., (1993). The idea of the proponents of these models is based on the understanding that good news (positive shocks) these models is based on the understanding that good news (positive shocks) and bad news (negative shocks of the same magnitude have differential effects on the conditional variance.

The EGARCH which captures asymmetric properties between returns and volatility was proposed to address three major deficiencies of GARCH model. They are (1) parameter restrictions that ensures conditional variance positive; (ii) non-sensitivity to asymmetric response of volatility to shock and (iii) difficulty in measuring persistence in а strongly stationary series. The log of the conditional variance in the EGARCH model signifies that the leverage effects exponential and not quadratic. The specification of volatility in term of its logarithmic transformation implies the nonrestrictions on the parameter to guarantee the positivity of the variance (M^aJose, 2010), which is a key advantage of EGARCH model

over the symmetric GARCH model.

Zakoian (1994)specified the TGARCH model by allowing the conditional standard deviation to depend on sign of lagged innovation. They specification does show not parameter restrictions guarantee to the of conditional positivity the variance. However, to ensure stationarity of the TGARCH model, the parameters of the model have to be restricted and the choice of error distribution account for the stationarity TGARCH model is closely related to GJR-GARCH model developed by Glosen et al., (1993).

Ding et al., (1993)further generalized the standard deviation GARCH model initially proposed by Taylor (1986) and Schwert (1989) and called it power GARCH (PGARCH). This model relates the conditional standard deviation raised to a power, d (positive exponent) to a function of the lagged conditional standard deviations and the lagged absolute innovations raised to the same power. This expression becomes a standard GARCH model when the positive exponent is set at two. The provision for the switching of the power increases the flexibility of the model.

Researchers in different field of study including econometrics and statistics has carried out research on modeling exchange rate in Naira/Pounds sterling, some of the studies are similar but different analysis technique, duration of the used etc. hence, this study used the below studies to served as review of related empirical studies research since no will be completed without review of what others had done to show similarities and difference in their approach and methods. However, in one of the noticeable empirical studies conducted could be raced to Vergil, (2002). He investigated the impact of real exchange rate volatility on the export flows of Turkey to the United States and its three major trading partners in the European Union for the period between 1990 – 2000. The standard deviation of the percentage change in the real exchange rate was used to measure the exchange rate volatility.

Also, Asemota and Bala (2013) examine exchange – rate volatility with GARCH models using monthly exchange-rate return series from 1985 – 2011 for Naira/US dollar returns rates with exogenously determined break points. Result reveal present of volatility in the three currencies and equally indicate that most of the asymmetric models rejected the existence of a leverage effect except for models with volatility break. Evaluating the models through standard information criteria, volatility persistence and log likelihood statistic indicated that the results improved with estimation of volatility models with breaks as against those of GARCH models without volatility breaks and that the introduction of volatility breaks the level of persistence in most of the models.

Jayasuriya (2002) examines the effect of stock market liberalization stock on return volatility using Nigeria and fourteen other emerging market data, from December 1984 to March 2000 to estimate asymmetric GARCH model. The inferred that study positive (negative) changes in prices have been followed by negative (positive) changes. The Nigeria session of the result tilted more to business cycle of behaviour of series return than volatility clustering. Ogum et al, (2005) apply the Nigeria and Kenya stock data on EGARCH model to capture the emerging market volatility. The result of the study differed from Jayasuriya (2002). Though volatility persistence is evidenced in both market; volatility responds more to

negative shocks in the Nigeria market and the reverse is the case for Kenya market.

Gulumbe, Dikko, Hassain and David (2016) investigated the exchange rate between the Naira and other currencies. The impact of exogenous rambles in modeling volatility was considered while using both the GARCH (1,1) and its asymmetric variants. Three of the four return series reveal heteroscedastility. The results of the fitted models indicated that the majority of the parameters are significant and that volatility is quite persistent. Hence, the results of the asymmetric model indicate different impacts for both negative and positive shocks and evidence of superior forecasting performance to the asymmetric GARCH.

 $\sigma_t^2 = \beta_0 + \sum_{i=1}^q \beta_i \, \varepsilon_{t-i}^2 + \sum_{j=1}^p B_j \, \sigma_{t-j}^2$

Where p is the order of the GARCH terms, σ^2 and q is the order of the ARCH terms, ϵ^2 . β_0 is constant term, $\beta_0 > 0$; $\beta_i \ge$; 0, i = 1,..., q – 1; j = 1,..., p – 1 and β_{P} , β_q

 $\sigma_t^2 = \beta_0 + \beta_1 \varepsilon_{t-1}^2 + \beta_2 \sigma_{t-1}^2$

Also, the second model for the study is the EGARCH simply refers to as **Exponential Generalized** Autoregressive

MATERIALS AND METHODS

The data for this research work is the monthly Naira/Pound sterling exchange rates from 2003 to 2017 published under the Data and statistics heading of the Central Bank of Nigeria website www.cenbank.org.

Model Specifications

The idea of model specification needs to do with measurement to digest or gauge some genuine part of swapping scale unpredictability. In this examination, there are three models instability we should consider. They include: GARCH (p,q) as an expanded structure of ARCH (q) as proposed bv Bollersele v (1986) in which the plags of past protected difference were included. The GARCH (p,q) is refined as:

(1)

> 0. σ_t^2 is the conditional variance and ε_t^2 , disturbance term. The reduced form of equation 1 is the GARCH (1,1) represented as;

(2)

conditionalHeteroskedasticity.This modelwas proposed byNelson (1991)and the conditional

variance was specified generally as

$$\log(\sigma_t^2) = B_o + \sum_{t=1}^q \left\{ \alpha_t \left| \frac{\varepsilon_{t-i}}{\sigma_{t-i}} \right| + Y_t \left(\frac{\varepsilon_{t-i}}{\sigma_{t-i}} \right) \right\} + \sum_{j=1}^p B_j \log(\sigma_{t-i}^2)$$
(3)

 $\varepsilon_{t-i} > 0$ and $\varepsilon_{t-i} < 0$ implies good and bad news and their total effects are $a(1-Y_1)|\varepsilon_{t-1}|$ and $(1-Y_1)|\varepsilon_{t-1}|$ respectively. When $Y_t < 0$, expectation is that bad news would have higher impact on volatility. However, this achieves variance stationary when $\sum_{j=1}^{p} B_{j} < 1$. Hence, we shall constraint the study to modeling of conditional variance using EGARCH (1,1), which is defined as

$$\log(\sigma_t^2) = B_o + \alpha_1 \left| \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right| + Y_1 \frac{\varepsilon_{t-1}}{\sigma_{t-1}} + B_1 \log(\sigma_{t-1}^2)$$
(4)

Here, we shall consider the total effect of both bad and good news the for EGARCH (1,1) as given in $(1-Y_1)|\mathcal{E}_{t-1}|$ $(1+Y_1)|\mathcal{E}_{t-1}|$ and accordingly. In an attempt to (1994). accept the Null Hypothesis that Y₁ shows the presence of = 0 Leverage effect, that is bad news have stronger effect than good news on the volatility of exchange $\sigma_t^2 = B_o + \sum_{i=1}^q \alpha_i \ \varepsilon_{t-i}^2 + \sum_{i=1}^q Y_i \ l_{t=i} \ \varepsilon_{t-1}^2 + \sum_{i=1}^p B_j \ \sigma_{t-j}^2$ Where $l_{t-j} = 1$ if $\varepsilon_{t-1}^2 < O$ otherwise.

rate return and the third model for the study is the Threshold GARCH (TGARCH) model. The threshold GARCH (TGARCH) model was proposed by Zakolam (1994). The generalized specification for the conditional variance using TGARCH (p,q) is refined as

In this model, good news implies
$$\varepsilon_{t-1}^2 > O$$
 and bad news implies that $\varepsilon_{t-1}^2 < O$ and these two shocks of equal size have variations in their

effects on the conditional variance. However, the first order representations of TGARCH (1,1), defined as

(5)

$$\sigma_t^2 = B_o + a_1 \,\varepsilon_{t-1}^2 + Y_1 \,l_{t-1} \,\varepsilon_{t-1}^2 + B_1 \,\sigma_{t-1}^2 \tag{6}$$

Then good news has an impact of α_1 and bad news has an impact of $\alpha_1 + y_1$

Error Distributions

These three models specified above were analyzed in specific error distributions to show that return series is inefficient with the Gaussian process. The series were estimated with the following error distribution models; they are

$$L(\theta_t) = -\frac{1}{2} \sum_{t=1}^T \left(In2\pi + In\sigma_t^2 + \frac{\varepsilon_t^2}{\sigma_t^2} \right)$$

Where δ_t^2 is the given GARCH models

Likewise, the suspicion that GARCH models take after GED as it's tends to represent kurtosis in returns which are not enough evaluated with normal normal distribution, generalized error distribution and tdistribution otherwise called the student's t –distribution.

The normal distribution done by maximizing the likelihood function as follows:

(7)

assumption, at that point we consider the utilized of the Generalized Error Distribution. This is finished by augmenting the probability work beneath

$$L(\theta_{t}) = -\frac{1}{2} \log \left(\frac{\Gamma r_{\nu^{2}}}{\Gamma \left(\frac{3}{\nu} \right) \left(\frac{\nu_{2}}{\nu_{2}} \right)^{2}} \right) - \frac{1}{2} \log \sigma_{t}^{2} - \left(\frac{\Gamma \left(\frac{3}{\nu} \right) \left(y_{t} - X_{t}^{1} \theta \right)^{2}}{\sigma_{t}^{2} \Gamma \frac{1}{\nu_{t}}} \right)^{\frac{\nu_{2}}{2}}$$
(8)

Where v is the shape parameter which represent the skewness of the profits and v > 0.

The higher the estimation of v, the more noteworthy the heaviness of the tail probability, GED is viewed as normal distribution when v = 0.

The volatility models evaluated is focused to augment the probability capacity of student's t distribution.

As per Atoi (2014) this is refined as:

$$L(\theta_{t}) = -\frac{1}{2} \log \left(\frac{\pi(r) \Gamma r_{\nu^{2}}}{\Gamma(r+1\nu_{2})^{2} (\nu_{2})^{2}} \right) - \frac{1}{2} \log \sigma_{t}^{2} - \frac{(r+1)}{2} \log \left(1 + \frac{(Y_{t} - X_{t}^{2}\theta)^{2}}{\sigma_{t}^{2}(r-2)} \right)$$
(9)

Hence, r represent the degree of freedom and controls the tail behavior. r >2.

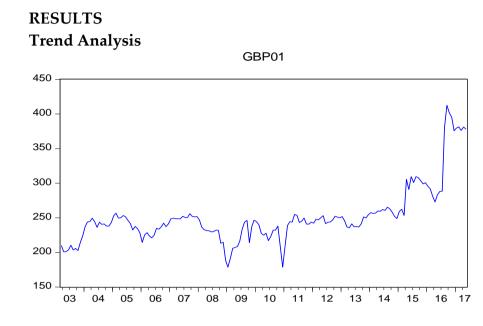


Figure 4.1: Trends in Monthly Exchange Rate Returns (March, 2003- May, 2017)

The Great Britain Pounds Sterling (GBP) time series graph demonstrates confirmation of volatility however not in here and there movement. The conversion scale month to month return display sharp increments with This comparing diminishes. demonstrates Pounds Sterling swapping scale inside this period

under the examination will be volatile.

Differencing of the Variable

The differencing of the variable were done to enhance stationarity using Augmented Dickey Fuller and the outcomes are as show underneath;

Variable	Order of Differencing	ADFT	1%	5%	10%
Exchange	1(0)	-0.813337	-3.468980	-2.878413	-2.575844
Rate	1(1)	-11.89054	-3.469214	-2.878515	-2.575899

Source: Researcher's Computation

From the table 4.1 above the variable is stationary at the first difference (1(1)). The estimations of the information tried at

stationary was utilized to gauge a relapse condition whose lingering generally called the arrival arrangement of the gauge where

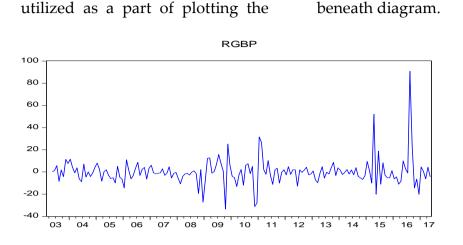


Figure 4.2: Graph of the Exchange Rate Return Series

Variable	Mean	Median	Max	Min	Std. Dev	Skewness
Exchange	-1.13e-18	-0.0021	0.2723	-0.1484	0.04619	1.3484
Rate						
	Kurtosis		Jarque-Bera		Probability	
	12.7261		717.4310		0.000	

Source: Research Computation

Henceforth, from the table Jargue-Bera statistics value is 717.3410 genuine it is significant at 0.05% level of significance. This demonstrates that the Jarque–Bera demonstrates that trade return arrangement for this investigation is not typically conveyed. What's more, the skewness is not close to zero (it is 1.348423) and the Kurtosis is more noteworthy than 3. The alterative inferential measurements, for example, student _ t test, normal distribution and generalized error distribution (GED), and so forth will be consolidated in the ARCH and GARCH models and the use selection of model becomes necessary.

Table 4.3: Test for ARCH Effect

Heteroskedasticity Test: ARCH	Lag 5
F-statistic	1.016721
Pro. F(5,158)	0.4097
Obs * R-squared	5.112171
Prob. Chi-square (5)	0.4023

Source: Researcher Calculation using Views Software Version 9.1

89 | Odu Vine Imerani & Didi Isaac Essi

The consequence of the ARCH test was led in accordance with the ARCH LM test, propounded by Engle (1982),. The f-test measurement and Obs*R-squared in the table (4.3) demonstrates proof of ARCH impact in the development rate of Pounds Sterling utilized as the variable for the investigation, despite the fact that, it is not measurably huge at any level of centrality. Correspondingly, the test for different lags is ignored on the grounds that the lags tested here is sufficiently adequate for unpredictability demonstrating (Abdukareen *et al.*, 2016). Additionally, having affirmed that the variable displayed conduct which can be evaluated utilizing GARCH. We might in this way, appraise the information of the arrival arrangement utilizing GARCH family models with fixed and non-fixed parameter in the dispersion presumptions. Beneath table (4.4) demonstrates an estimated result of first order GARCH family models (Non-fixed parameters).

CARD International Journal of Science and Advanced Innovative Research (IJSAIR) Volume 2, Number 4, December 2017

Table 4.4: Estimation Results of First Order GARCH Family Models (with Non - Fixed Parameters)

			Student's-t Di	istribution	Normal Distribution		Generalized Error Distributions		Min Across Distribut	SIC Error tion
Models	Equations	Model Parameter	Coefficient	P-Value	Coefficient	P-Value	Coefficient	P-Value		
	Mean	Intercept	0.01199	0.5191	0.002429	0.4943	0.001118	0.3175		
		AR	0.035940	0.6335	0.031051	0.7548	-0.095960	0.0041		
GARCH (1,1)		SIC	-3.816914		-3.274599		-3.759037		-3.816914	:
	Variance	Intercept	0.000746	0.2192	0.001387	0.0024	0.000511	0.1068		
		ARCH	0.763267	0.2927	0.207160	0.0410	0.538701	0.2150		
		GARCH	0.352004	0.0713	0.128680	0.6190	0.363283	0.1774		
	Mean	Intercept	0.000912	0.6235	-0.000233	0.9504	-0.001223	0.2791		
EGARCH(1,1)		AR	0.045309	0.5314	-0.109254	0.2119	-0.097767	0.0406		
		SIC	-3.805415		-3.334743		-3.750098		-3.805415	
		Intercept	-1.980878	0.0230	-0.577314	0.0033	-1.531752	0.0809		
	Variance	ARCH	0.680222	0.0308	0.394670	0.0000	0.566168	0.0091		
		Asymmetric	-0.263597	0.1317	-0.316477	0.0004	-0.236966	0.1262		
		GARCH	0.744874	0.0000	0.943787	0.0000	0.816604	0.000		
	Mean	Intercept	0.000746	0.6970	0.000522	0.8904	-0.000929	0.3435		
		AR	0.058440	0.4231	0.078994	0.4215	-0.10435	0.0240		
		SIC	-3.803403	•	-3.279762		-3.738617		-3.803403	
TGARCG(1,1)		Intercept	0.000672	0.1654	0.001170	0.0009	0.000435	0.1424		
. ,		ARCH	0.256841	0.5405	0.018378	0.8561	0.231338	0.4706		
	Variance	Asymmetric	0.898530	0.3298	0.462746	0.0740	0.591354	0.3359		
		GARCH	0.383764	0.0780	0.233122	0.2810	0.446083	0.0839		

Source: Researcher's Computation using Eview Software Version

91 | Odu Vine Imerani & Didi Isaac Essi

The above outcomes in table (4.4) are estimation results, of the first order GARCH (1,1) family show with non-fixed parameter. In the the ARCH co-efficient model. parameters are for the most part not huge at 5% level of hugeness aside from the block whose coefficients are importance at 1%, 5% and 10% separately level of significances. While GARCH (1,1) with student's t distribution have the base Schwartz information criterion of (- 3.816914) and it's instability at 111.5271%.

So also, the EGARCH (1,1) have all the coefficient of noteworthy at 5% level of huge. In spite of the fact that, the EGARCH (1,1) with General typical and Error circulation has negative coefficient of their catch and ARCH segment. This demonstrates the estimator has mean returning qualities, showing that instability stun is changeless. Additionally, the whole fluctuation condition segment is not measurably centrality at 1%, 5% or 10% level criticalness. Be that as it may, EGARCH (1,1) with student's t distribution having (-3.805415) minimum Schwartz data and it's unpredictability model effect is 142.1%.

Likewise, TGARCH (1,1) has every one of it's coefficients of the capture in the mean condition to positive aside from TGARCH (1,1) with Generalize error distribution whose intercept is negative (-0.000929) and the ARCH (-0.10435). In spite of the fact that, they are measurably huge at 5% level of noteworthiness separately. This uncover displaying trade TGARCH (1,1) utilizing with summed up mistake dispersion, negative part in is a mean returning circumstances that demonstrating unpredictability stun is lasting. Though in the difference condition parts, every one of the coefficients of the model parameters are altogether positive. Despite the fact that they are not all noteworthy at their different level of hugeness. Be that as it may, (1,1) TGARCH with the understudies-t distribution with the Schwartz information criterion (-3.8034303) was chosen the best fit.

Table 4.5: Estimation Results of First Order GARCH Family Models ((with Fixed Parameters at r = 5, 10 and 15)

			Student's-t D	stribution (r = 5) Student's-t Distribution (r = 10)		Student's-t Distributions (r = 15)		Min SIC Across Error Distribution	
Models	Equations	Model Parameter	Coefficient	P-Value	Coefficient	P-Value	Coefficient	P-Value	
	Mean	Intercept	0.000842	0.6907	0.000369	0.8742	0.000118	0.9612	
		AR	0.040340	0.6184	0.031288	0.7187	-0.021031	0.8173	
GARCH (1,1)		SIC	-3.797139	·	-3.682786	·	-3.605530		-3.797139
i	Variance	Intercept	0.000350	0.0125	0.000351	0.0046	0.000384	0.0030	
		ARCH	0.347671	0.0380	0.316714	0.0182	0.313877	0.0137	
		GARCH	0.355703	0.0359	0.367752	0.0183	0.375511	0.0137	
	Mean	Intercept	5.87E-05	0.9776	-0.000611	0.7920	-0.000847	0.7304	
EGARCH(1,1)		AR	0.049482	0.5126	0.018948	0.8098	-0.004860	0.9499	
		SIC	-3.793734		-1.536875		-3.614281		-3.793734
		Intercept	1.830289	0.0189	-1.536875	0.0117	-1.186570	0.0047	
	Variance	ARCH	0.461124	0.0008	0.414930	0.0000	0.385058	0.0000	
		Asymmetric	-0.195447	0.0308	-0.189412	0.0079	-0.201245	0.0015	
		GARCH	0.785418	0.0000	0.822883	0.0000	0.866921	0.000	
	Mean	Intercept	0.000319	0.8842	0.000170	0.9465	-0.000404	0.8835	
		AR	0.077118	0.3247	0.095404	0.2593	0.098352	0.2649	
		SIC	-3.787979		-3.676887		-3.602120		-3.787979
TGARCG(1,1)		Intercept	0.000352	0.0222	0.000468	0.0015	0.000560	0.0001	
		ARCH	0.100956	0.4934	0.065381	0.5666	0.052314	0.6145	
	Variance	Asymmetric	0.434819	0.1080	0.479472	0.0519	0.522689	0.0357	
		GARCH	0.398970	0.0469	0.301301	0.1031	0.262264	0.01168	

Source: Researcher's Computation using Eviews Software Version (9.1)

In table (4.5) over, the coefficients of the conditions display parameter's for the models are not factually noteworthy at the 5% level of criticalness. Every one of the coefficients in the mean conditions have positive sign demonstrating that swapping scale stun instability is transiently. This could be credited to changeability in the arrangement Additionally, return. in the difference condition parts of the ARCH coefficients for GARCH (1,1) with fixed parameter at r = 5, 10, is individually are for the most part positive and measurably noteworthy at the 5% level of centrality.

The outcomes that GARCH (1,1) with fixed parameter is mean returning (summing the ARCH and GARCH coefficient is less than one). In any case, the level of impact in GARCH (1,1) is assessed 70.3374%. 68.4464% at and 68.9388% This individually. demonstrates instability ingenuity was better than expected inside this the period under investigation. GARCH (1,1) with fixed parameter r = 5 with the Schwarz information criterion (-3.797139) was consider best fitted at this level, and this was Olowe, (2009)supported by findings.

EGARCH (1,1)Also. fixed parameter r = 15 demonstrates negative mean in the mean condition yet they are not all measurably huge at 5%. In this confirmation way, this that negative stuns increment swapping scale instability of the Pounds sterling. Likewise, the difference condition segment all have positive catch aside from EGARCH with fixed parameter (r = 10, 15) with the capture (-1.536875) and (-1.186570)separately. This mean increment in swapping scale prompts relating increment in instability. Albeit, every one of the coefficients of the captures are noteworthy at 5% level of centrality. The ARCH part all have positive sign and are noteworthy at 5% level of critical while the Asymmetric segments all have negative noteworthiness at 5% level of hugeness. The negative sign show that the fluctuation of the arrangement recommended that the positive stuns infer a higher next period restrictive difference as against the negative sign.

Additionally, the EGARCH (1,1) parts all have positive and it is critical at 5% level of hugeness. Be that as it may, the level of effect is evaluated at 124.6542%, 123.7813% and 125.1979% utilizing EGARCH with fixed parameter r = 5, 10, 15

individually while EGARCH with fixed parameter r = 5 is chosen as the best fitted model with the esteem (- 3.793734). Furthermore, TGARCH (1.1)with fixed parameter r = 5, 10 and 15 was additionally considered of the block and shows they are not measurably critical at 5% level of centrality where in as the fluctuation condition every one of the captures positive coefficient with under 5% level of hugeness. Additionally, ARCH all have positive coefficient however they are measurably critical at 5% level of importance.

Model Selection (Best Fitted)

From the eighteen (18) models evaluated utilizing the request GARCH family demonstrate with fixed and non-fixed parameter in it's three mistake dissemination suppositions, three models were chosen on the premise of the Schwarz information criterion (SIC). The consequences of the three models chose are displayed in the table underneath.

Tuble not negatio of the Estimated Model Screetion (Best Friday)									
First	Order	Error Distributions		Set/Non-Set Parameters	SIC				
GARCH	Family	Assumption	าร						
Model									
GARCH (1	l <i>,</i> 1)	Student's-t		Non-set parameters	-3.81914				
GARCH (1,1)		Student's-t		Set Parameters at $r = 5$	-3.797139				

Table 4.6: Results of the Estimated Model Selection (Best Fitted)

Source: Researcher's Computation

Table 4.6 demonstrates that the model with the minimum Schwarz information criterion was considered for choice, in any case, GARCH (1,1)for non-fixed parameter in student's-t distribution have the slightest SIC, followed by GARCH (1,1) with fixed parameter at r = 5 in student's-t distribution.

DISCUSSION

The monthly exchange rate data for this study spans from 03/2003 – 05/2017 with the total data points of 169, conditional variance models were fitted to continually, compound monthly exchange rate. Eighteen (18) models was estimated using the order GARCH family model with set of parameters in its three error distribution assumptions.

In the estimation of the models, certain conditions where taken into contemplations and this incorporate the pattern showed by the variable, the ARCH impact, and the level of the primary request, GARCH family models. Be that as it may, the pattern

displayed swings in a here and there development which is in accordance with Abdulkareem et al., (2016) and this demonstrates a flimsy example of the arrangement. The level of determination of the primary request GARCH family display were additionally inspected, using percentage distribution.

The results obtained were reflected in the discussions on the respective tables. Also, the models were selected base on their fitness using the SIC. However, GARCH (1,1)in student's-t error distribution for non-fixed parameter with the minimum SIC of -3.816914 and its volatility impact 111.5271 was considered best fitted, followed by GARCH (1,1) in student's-t with fixed parameter at r = 5, SIC -3.797139 and volatility impact 70.3374. All these supported and confirmed the findings of Olowe, (2009).

REFERENCES

- Abdulkareem A. and Abduhakeem K.A (2016). Analyzing Oil Price-Macro economic Volatility in Nigeria. CBN Journal of Applied Statistics Vol. 17. No. 1 (a) June, 2016).
- Bala A.D. and Asemota J.O (2013), Exchange Rates volatility in

Nigeria: Application of GRACH models with Exogenous Break CBN Journal of Applied Statistics vol. 4. No. 2 (June, 2013).

- Bollersehev. T. (1986). Generalized Auto Regressive Conditional Heteroskedasticity of Econometrics 31, 307-321.
- David, O.R, Dikko H.G, and Gulumba S.U. (2016). "Modeling volatility of the exchange rate of the Naira to major currencies. CBN Journal of Applied Statistics vol.7 No 2 (December, 2016).
- Eric, Z. (2008). Practical Issues in the Analysis of Univariate GARCH Models. Handbook of Financial Statistics, Springer-Verlag.
- Hansen, P. and Lunda, A. (2004). A Forecast Comparison of Volatility Models: Does anything Beat a GARCH (1,1) Models? Journal of Applied Econometrics, 20:873-889.
- Hojatallah, G. (2011). Modeling Asymmetric Volatility in the Indian Stock Market, International Journal of

Business and Management. 6(3).

- Hojatallah, G. and C.S Ramanarayanan (2011). Modeling Asymmetric Volatility in the Indian Stock Market. International Journal of Business and Management. 6(3).
- Hsieh, D. (1991). "Chaos and Nonlinear Dynamics: Application to Financial Markets". Journal of Finance, 46:1839-1877.
- Javasuriya, S. (2002). Does Stock market Liberalisation affect the Volatility of Stock Evidence Returns?: from Emerging Market Economies. Georgetown University Discussion Series.
- Musa Y. and Abubakar B. (2014). Investigating Daily Naira/Dollar Exchange Rate Volatility. А Modeling GARCH using and Asymmetric models. 10SR Journal of Mathematics (10SR-Jm). P-ISSN: 2319-7676 vol. 10 Issue 2 Vol. II.
- Ngozi V.A (2014). Testing Volatility in Nigeria Stock market using GARCH

Models. CBN Journal of Applied Statistics Vol. 5 No. 2 (December, 2014).

- Nwafor, F.C. (2006). The Naira-Dollar Exchange Rate Determination: A Monetary Perspective International Research Journal of Finance and Economic, 5, 25-30.
- Oboh, J.K (2002). Dynamics of Money, Banking and Finance in Nigeria. An Emerging Market, Aba: Astra Meridian.
- Ogum, G. Beer, F and Nouyrigat, G. (2005). Emerging Equity Market Volatility: An Empirical Investigation of Markets in Kenya and Nigeria. Journal of African Business 6(1/2): 139-154.
- Okpara & Nwegeak (2009). Nigeria Stock Market Volatility in Comparison with some Countries: Application of Symmetric Garch Models.
- Olowe, R.A (2009). Stock Returns Volatility and Global Financial Crisis in an Emerging Market. The Nigeria case. International Journal Research Review of

Business	Research	papers,	Economies	and	Finance.
5(4).			4,216-229.		

Suliman, Z.S.A (2012). Modeling Exchange Rate Volatility using GRACH models; Empirical Evidence from Arab Countries. International Journal of

DATA ON NAIRA/ POUNDS STERLING EXCHANGE RATE FROM MARCH 2003-MAY 2017

032003	2004	2005	2006	2007	2008	2009	2010			
209.9955	224.3431	243.3399	228.3847	241.2363	251.8566	188.5753	246.5881			
200.9329	237.6349	252.7643	214.575	248.5644	246.9395	178.8018	244.3407			
201.2191	244.0107	256.7061	225.329	249.3899	236.7878	191.205	240.0033			
203.573	244.7712	249.6398	228.6525	248.8474	232.9075	205.9846	227.507			
210.4556	249.4665	250.2402	223.68	248.5526	231.7032	207.107	224.8673			
203.5847	244.4235	253.258	220.9951	248.5526	231.4289	208.6278	227.8043			
205.773	236.2476	251.5389	224.8917	252.2849	229.5722	216.3113	217.0849			
202.714	243.5963	246.3994	234.8945	250.5031	230.2052	233.6344	223.151			
214.6949	240.5165	241.7703	233.6113	250.5031	232.257	243.7518	232.0686			
	241.1878	232.3839	237.061	256.1253	231.8276	246.3388	232.2505			
	238.0579	237.5499	242.3669	252.1554	213.1882	214.0415	238.1117			
	237.988	234.1988	237.3376	251.3745	214.6686	237.4209	208.4568			

2011	2012	2013	2014	2015	2016	052017
178.8018	243.7811	250.0883	254.3998	249.01	300.7008	375.71
208.8615	242.3366	251.8645	257.4811	259.15	295.5985	379.49
238.9212	247.9191	245.9135	256.39	262.25	291.7176	381.39
244.4643	247.1015	236.6621	256.79	253.4616	281.2963	376.32
243.7957	250.0216	235.6186	259.96	305.6922	272.9632	381.17
254.9788	253.1215	241.2412	259.34	290.969	283.1678	378.13
253.5003	241.5683	237.1297	262.06	309.5069	287.9746	
243.1828	243.4535	237.5188	260.72	300.9766	288.4277	
245.2799	244.1701	236.7085	265.41	309.5069	380.2105	
249.7226	246.8339	241.3813	262.84	308.0292	412.4714	
240.9441	252.2546	251.4272	258.25	303.5376	401.778	
240.7907	251.0062	249.9499	252.05	298.9307	395.4209	

Source: Central Bank of Nigeria (www.cbn.gov.ng)