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ABSTRACT

Money is a driving tool in any economy of a nation. As such
the analysis and forecasting of Broad Money is of utmost
importance to policy makers of any economy. The analysis
shows the comparison of the performance of Nigerian Broad
Money for GARCH and SARIMA models. In financial time
series, the non-constant volatility is always high and GARCH
model is better compared to the SARIMA model. The data
used was collected from Central Bank of Nigeria website
www.cenbank.org for 16 years (2000 - 2015). The time series
were modeled using both methodologies and the analysis of
the result shows that GARCH model outperform SARIMA
models based on the minimum AIC. In the confines of this
experiment SARIMA AIC was higher than that of GARCH,
which showed that GARCH model is better than ARIMA
model.

INTRODUCTION

Money is a driving tool that is very important for the economy of
any nation. It acts as a transfer of value for goods and services and as
a unit of wvalue. It helps in decision making and serves as
transaction balances. It also includes different financial instruments
and some other types of deposits balances that can be converted to
transaction money.

Broad money is the quantity of the money supply which
includes more than just physical money such as currency and coins
which is used in determing the availability of money in a country.
The money supply is the total of all the assets in a country that
consumers, producers, individuals and government can use as a form
of payment or converted into demand deposits, treasury bills,
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debentures, ordinary shares and short-term investments which can be
converted easily into money and vice versa. It is a monetary indicator
usually used to check the total supply of money in the economy which
is easy to track. @ The importance of Broad money cannot be over-
emphasized. It is used by the monetary authority, Central Bank of
Nigeria by the use of interest rate, direction of credits and supply of
money to regulate the level of activities in the economy in order to
enhance price stability, investment for employment and economic
growth and development.

Monetary policy emphasizes on more effective instruments in
the rate of deregulation of money market preventing money from
becoming the main cause of disturbances in the country. It allows the
supply of broad money to expand to meet the needs of households and
companies. An effective financial policy basically = depends on the
ability of an Economists and Statisticians to provide a well suitable
model that can be of assistance in the on-going economic processes and
forecast of the future development.

LITERATURE REVIEW

A GARCH process depends on past variance and past squared
observations to model for present variance. They are usually used in
financial aspect because of its efficiency in modeling assets proceeds
and price increase. According to Engle (1982), it is a statistical
model which is used by financial institutions for estimation of the
volaticity of stock returns in financial market in which volaticity can
transform in becoming more volatile throughout the periods of
monetary crises or world procedures and less volatile throughout
periods of relative quietness and steady economic growth. GARCH
models aim to reduce  mistakes in forecasting and facilitate the
accuracy of ongoing predictions.

A comparative study was carried out by Sparks and Yurova
using the ARIMA model versus the ARCH/GARCH models on daily
equity prices of time series data for large companies proved that for
one-step ahead forecast, ARCH/GARCH model perform better than
the ARIMA model.

The SARIMA is an offshoot of the ARIMA models. These models
were put together by American Statisticians G.E.P Box and Jenkins in
1976. The Box Jenkins approach invents a systematic class of model
called ARIMA (Autoregressive Integrated Moving Average) models to
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hold time correlated forecasting and modeling (Shumway and Stoffer,
2010). The observed data in this methodology are assumed to follow a
multiplicative model. These models include the autoregressive model
of order P, AR (p), the moving average model of order q, MA (g), the
autoregressive moving average model, ARMA (p, gq), the ARIMA
(Autoregressive Integrated Moving Average) model and the SARIMA
(Seasonal Autoregressive Integrated Moving Average). The SARIMA
model is helpful in situation where the time series data shows evidence
of seasonality (i.e. timely occurrence with about the same intensity
periodically). Many economists and fiscal time series are recognized to
show some seasonality in their behavior.

Etuk (2012), used the seasonal ARIMA model to forecast the
Nigeria consumer price index data from March 1963 to December 2003,
the results reveal a seasonality of Lag 12 and a seasonal MA component
to the model. The model used is (0, 1, 1) x (0, 1, 1)12 seasonal model
which shows seasonality. An Autoregressive Integrated Moving
Average (ARIMA) model, (0, 1, 1) x (0, 1, 1)1 is fitted to the series. A
visual assessment of the actual and fitted plots reveals a close accord
between the two. Some other statisticians that have done extensive
work on the SARIMA model include: Helman (2011), Daniel and
Adebisi (2013), Etuk and Igbudu (2013), Etuk and Ojekudo (2014),
Ampaw et al., (2013), Etuk et al., (2013).

MATERIALS AND METHODS

The data for this analysis are Monthly Nigerian Broad Money from
2000-2015 collected from the website of Central Bank of Nigeria website. (E-
views) software was used.

The Garch Model

GARCH means Generalized Autoregressive Conditional
Heteroskedasticity. It is an econometric term invented in 1982 by
Robert F. Engle. It is used where volatility is a crucial issue. Volatility
is the degree of variation of data overtime as measured by the standard
deviation.

The GARCH (P, Q) models involved the residual of a time series
regression. The model is given by;
Let Yi=C + &
C is the deterministic part and the residual is modeled as

8t=\/;tzt.
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E(St) =0

el = ol Z!.

E (&) =0{ and

E(Z}) =of.

Where, o/ is the conditional variance given as

Gtz =m+o1 Ec12+onEe-2?+asEe3?+. .. +0qE-q?+B16t-124+P 25122+ P30e-32+.. . ... + Bp ot —p?

Where in the original model Z: have the unit normal density Z: ~ N
(0:1).

The Sarima Model

The SARIMA methodology is a multiplicative model that is
widely used by statisticians for analyzing time series data. It was
invented by G.E.P. Box and Jenkins in 1976. It is preferred because of
its high degree of accuracy. When the data to be analyzed is seasonal,
the SARIMA (p,d,q) x(P,D,Q)s is used. A non-seasonal ARIMA model
is classified as an “ARIMA’ (p, d, g) model.
@r (B®) ¢p(B) Vil Vix: = U+ Oo(B°)6,(B)Ws,
@(B)=1- ¢B - @B? ....Br (non-seasonal AR component)
O(B?) =1 -D1B>- @yB* .... - OyBrs(seasonal AR component)
04(B) =1 +01B +0:B? .... +0;Bi(non-seasonal MA component)
@q(B°) =1 +@Bs +@B* .... +¢B”(seasonal MA component)
Wi=(1-B)*(1-B)"y:
Where, w, is the usually refers to as the Gaussian white noise
processes.

RESULTS

First, SARIMA technique was used for the analyses of the data
and in doing this, a time plot is first constructed which is given in
Figure 1.1.
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FIGURE 1: NMCS
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Figure 1.1: Time Plot of Nigerian Broad Money
A proper look at the plot shows the presence of a trend. In this
case, we shall conduct an Augmented Dickey-Fuller (ADF) test to check

if the data is stationary. The result is shown in Table 1.1 below.

Table 1.1: Augmented Dickey-Fuller Unit Root Test on NMCS

Null hypothesis: NMCS has a unit root
Exogenous Constant
Lag Length 0 (Automatic —based on SIC maxlag = 14)

t-Statistics Prob *

Augmented Dickey-Fulley test statistics 1,437756 0.9991
Test critical values 1% level -3.464643

5% level -2.876515

10% level -2.574831

*MacKinnon (1996) one sided p-value

Augmented Dickey-Fuller Test Equation
Dependent Variable D(NBD)

Method: Least Square

Date: 05/14/17 Time 16.31

Sample (adjusted 2000M02 2016M02
Included observations 194 after adjustments

Variables Coefficient Std. Error t-Statistics Prob.
NMCS (-1) 0.005854 0.003970 1.455396 0.1472

C 0.056729 0.039459 1.449940 0.1487
R-squared 0.010819 Mean dependent var. 0.101571
Adjusted R-square 0.005585 S.D dependent var. 0.335524
S.E of regression 0.334586 Akaike info criterion 0.658570
Sum squared resid 21.15812 Schwarz criterion 0.692625
Log likelihood -60.89340 Hannah-Quinn criter. 0.672364
F-statistic 2.067142 Durbin-Watson stat. 1.941331
Prob(F-statistic) 0.152157

The test statistic above shows that the data is non-stationary as
such we take the first difference to make it stationary. A plot of the
first difference is shown in figure 1.2.
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Figure 1.2: Time Plot of Differenced Series

A look at the time plot above shows that the first difference of
the Nigerian Broad Money is a stationary data. An Augmented Dickey
Fuller (ADF) test was conducted to confirm the stationary of the data.
The result of the test is shown in table 1.2 below.

Table 1.2: Augmented Dickey-Fuller Test Result for Differenced

Series

Mull Hypothesis: DMNMCS has a unit root
Exogenous: Constant
Lag Length: O {(Automatic - based on SIC, maxlag=-14)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -14. 47369 0.0000
Test critical values: 1% level -3.4564280
5% level -2 876356
10% level -2 574746
*Mackiinnon (1995} one-sided p-values.
Augmented Dickey-Fuller Test Equation
Crependent Variable: D{DMNMCS)
Method: Least Squares
Date: 072416 Time: 09:10
Sample (adjusted): 2000M02 2016M032
Included observations: 193 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
DMNMCS-1) -1.046406 0.072297 -14. 47369 00000
c 0107375 0.025415 4224924 00000
R-squared 0522082 Mean dependent var 00005138
Adjusted R-squared 0.520585 S.D. dependentvar 0.487500
=.E. of regression 0337844 Akaike info criterion 0.676067T
Sum squared resid 21.76176 Schwarz criterion 0. 70987F7F
Log likelihood -63 24044 Hannan-Quinn criter. 05689759
F-statistic 209.4878 Durbin-Watson stat 2008190
Prob{F-statistic) 0000000

Correlogram of the First Differences
The correlogram of the first difference
Money shows a spike at lag 12. This shows the

of the Nigerian Broad
presence of a seasonal
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moving average (MA) of order 1. The correlogram of the first
difference is given in Figure 1.3. The correlogram of the first difference
is given in Figure 1.3.

Autocorralation Fartial Corralation AC PAC Q-Stat Frob

-0.046 -0.046 0.4239 0.515
-0.088 -0.091 1.9745 0.373
0.046 0.038 23921 0.495
0016 0012 243444 00655
-0.008 0007 24577 0783
0.012 0012 2.4845 0870
-0.100 -0.102 45144 0719
-0.037 -0.045 47888 0.780
-0.004 -0.027 4.7924 0.852
0.084 -0.087 6.2508 0794
11 0002 0003 62514 08506
12 0277 0272 22316 0034
132 0.003 0045 22317 0.051
14 -0.048 -0.009 22.800 0.064
15 0.029 -0.002 22981 0.085
16 -0.018 -0.047 23.052 0.112
17 0.045 0.026 22497 0.124
18 0071 0080 24573 0137
19 -0.039 0012 24902 0.164
20 -0.003 0012 24904 0.205
21 0092 0119 26753 0.179
22 -0.045 0017 27.200 0.204
23 0.039 0.053 27.546 0.233
24 0.149 0080 324832 0.115
25 0075 0074 33742 0114
26 00068 0031 33750 0.141
27 0.045 0040 34208 0.160
28 0035 0061 34495 0.18S
29 -0.088 -0.112 36.260 0.166
30 0.027 0075 36.424 0.195
321 -0.050 -0.022 37.018 0211
32 0065 0042 38014 0214
33 0000 -0.039 38014 0252
34 -0.132 -0.134 42168 0.159
35 0011 0014 42196 0.188
36 0268 0210 59542 0.008

Figure 1.3: Correlogram of the First Differences
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Estimation of the SARIMA (0,1,0)(0,0,1)12 Model

A look at the correlogram above suggests that the SARIMA
model that suits the data is SARIMA (0, 1, 0) (0, 0, 1)12 model.
Recall that the SARIMA model is given by:

@(B) @p(B*) Wi = pu+ 6i(B) Oq(B*)e:

From the identified model, there is no non-seasonal AR and MA
component. Also, there is no seasonal AR component. Thus, the
model becomes:

Wi=u+ ©q(B°) e

and the resulting equation is:
1-B (X¢) = u+ (1+ ©1B2) e
Xi—Xe1 = e+ OB2er+ p
Xt — X1 U+ e+ Oner-12
Xt=/,l+ Xe1+ et + O er-12

The estimation of the SARIMA (0, 1, 0) (0, 0, 1)12 model and the
result is given in table 1.3. From the result, the AIC is 0.631776.
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Estimation Result of the SARIMA model

Dependent Variable: DMNMCS

Method: Least Squares

Date: 07/24/M16 Time: 09:22

Sample (adjusted)y 2000M02Z 2016M03
Included observations: 194 after adjustments
Convergence achieved after 6 iterations

M& Backcast: 1999M02 2000M01

Variable Coefficient Std. Error t-Statistic Frob.
MA12) 0.3672E59 0071157 5161353 0.0000
R-squared 0.0303291 Mean dependentwvar 0102577
Adjusted R-squared 0.030391 S.D. dependentvar 0.336153
S.E. of regression 0331005 Akaike info criterion 0631776
Sum squared resid 21.14583 Schwarz criterion 0.648620
Log likelinood -60.28225 Hannan-CQuinn criter. 0.638597
Durbin-¥Watson stat 1.974518
Inverted MA Roots B9+ 24 .89-24i .65-.65i .65-.65i
24- 89i 24+ 89§ -24+ 39j -.24- 89i
- B5-65i - G5+ B5i -89+ 24j - 89-24i

Correlogram of Residuals of the SARIMA Model

The model was found to be adequate as the residuals were
uncorrelated. The MA(12) coefficient is 0.367269. The correlogram of
the residuals of the model is given in Figure 1.4.

Autocorrelation Fartial Correlation AC PAC Q-Stat Froo

1 -0.041 -0.041 0.3231
2 -0.045 -0,046 07261 394
3 0087 0054 1.3760 503
4 0046 0048 17914 617
5 0011 0002 1.8169 769
6 0031 0032 20135 847
/7 ~0.102 -0.106 41212 560
8 -0.066 -0074 49993 660
9 -0.054 -0073 5.5894 Go3
10 -0.068 -0.074 65529 664
11 -0.004 0.002 06.5569 767
12 -0.044 -0.039 6 9526 803
13 -0.015 0.001 6.9998 858
14 -0.051 -0.057 7.5405 ara2
1% 0.011 -0.003 7.56063 2911
16 -0.038 -0.054 7.8673 929
17 0.060 0.039 8.6354 028
18 -0.112 -0.125 11.36S5 837

19 -0.036 -0.0617 11.643
20 0041 0011 12014
21 0.116 0.107 14.957
22 -0.003 0.020 14959
23 0.046 0,042 15424
24 0098 0097 17.591
25 0.061 0.049 18.424
26 0089 0077 20217
27 0.074 0.0017 20.263
28 0.001 -0.002 20.264
29 0076 -0.078 21.584
30 0043 00389 22003
31 0001 00432 22004
32 -0.063 -0.0231 2209028
33 -0.034 0.022 23197
34 -0.128 -0.126 27.073
35 0.002 0.041 27.075
36 0248 0261 41892

Figurel.4: Correlogram of the Residual
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The first step is to check if the series can be analyzed using the
GARCH model, then the time plot of the data is looked upon which
shows spots of increased vibration sprinkled throughout the series .In
order to make the variance to be constant we generate a new series
which is the log of the original series. Let this new series be LNMCS. A
line graph of DLNMC (which is the first difference of LNMCS) is
given below:

DLNMCS

gl

L I R e R R s e v R e T TR e e
2000 2002 2004 2006 2008 2010 2012 2014 2016

........

Figure 1.5: Time plot of First difference of LNMCS

From the line graph, volatility clustering is obvious. Next we
estimate an AR (1). Since our objective is to check for volatility
clustering and interoscedasticity in the data series, we carry out a
check for ARCH effects using the ARCH LM Test. The test result of
this test is given in the table below:

Table 1.4: ARCHLM Test Result for NMCS

Hetercskadasticily Tast ARCH

F-statistic 0. 208703 FProb F(5 182) 0.9585 |
Obs " R-squared 1071774 Prob Chi-Squaraed(s) 0. 9566

Test Equation

Depandant Variable RESIODA2

Method: Least Squares

Date. 05/14/17 Time: 17:566

Sample (adjusted). 200008 2016M02
Included observations: 188 afner adjustments

Varnable Coefficient Std. Error t-Stanustic Fron
C 17.81745 5 200422 3 426154 O o008
RESID"2(-1) -0. 016631 0.073981 -0.2248085 08224
RESIODM2(-2) 0.002736 0.0735%43 0037202 09704
RESID*2(-3) -0 024342 0 073533 -0 331031 O 7410
RESID 2(-4) -0.025361 0.073580 -0.3440064 0.7307
RESIDN2(-5) 0. o627re3 0072815 0.862227 0.3897
R-squared 0 005701 Mean depaendant var 17 84669
Adjusted R-squared 0021615 8.D. dependent var 56711485
S E. of regrassion 57 32108 Akaike Info criterion 10 96661
Sum squared resid 597998 5 Scnwarz critaerion 11 06990
Lo likelihood -1024 861 Hannan-Quinn criter 11 00840
F-statintic 0. 208703 Durbin-Watson stat 2.002483
Prop(F-staustc) O 958511
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The F statistics and T*R? indicate the presence of ARCH in the
data. This totally justifies the use of GARCH model. Next we specify

the GARCH (1, 1) model and carry out the analysis. This analysis was
carried out using the e-views software.

Estimation of the Model
Using e-view software, the estimation output of the GARC (1, 1)

is given in Table 1.5

Dependent Variable: DMNMCS

Method: ML - ARCH (Marquardt) - Mormal distribution
Date: 072416 Time: 09:30

Sample (adjusted). 2000M02 2016M03

Included observations: 184 after adjustments
Convergence achieved after 46 iterations

Presample variance:; backcast (parameter =0.7)
GARCH = C(2) + C(2PRESID{-1)"2 + Cl4)"GARCH{-1)

Variable Coefficient Std. Error 7-Statistic Prob.

C 0.044259 0.011858 3732406 0.0002

Variance Equation

C -5.98E-06 4 G0E-05 -0.151579 0.8795
RESID{-1}"2 -0.019847 0.004322 -4 5892187 0.0000
GARCH{-1) 1.050086 0.0087E3 119.8296 0.0000

R-squared -0.030254 Mean dependentvar 0102577
Adjusted R-squared -0.030254 S.D. dependentvar 0.336153
S E. ofregression 0.341200 Akaike info criterion -0.129605
Sum squared resid 22 46850 Schwarz criterion -0.062226
Log likelinood 16.87168 Hannan-Quinn criter. -0.102321
Curbin-VWatson stat 2030843

From the above, the estimate of the parameters is:

c = 0.044259
w =  -6.98E-06
a = -0.019847
B = 1.050086

Substituting these values into the tentative model, we arrive at an
equation for model given as:
Y: =0.044259 - 6.98E (06) — 0.019847 y?,+ 1.050086 o,

The correlogram of the residuals of the GARCH (1, 1) model is given in
the Figure 1.6 below:
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Autocorralation FPartial Correlation AC PAC Q-Stat FProb
g 1 -0.041 0.041 0.3275 0.567
] = Bl 2 -0.087 0.088 1.8118 0.404
' ' 3 0010 0.003 1.8317 0608
L = L] -4 0093 0.087 35784 0.465
' ' 5 0014 0024 3.6200 0605
L == | 6 0138 0157 7.4638 0280
L) = Bl 7 -0.087 -0.075 9.0099 0252
' ' 8 -0.011 -0.001 D.0344 0339
) = Bl 9 -0.047 -0.073 94959 0393
' ' 10 0.018 -0.016 9.5594 0480
[ 11 0.034 0035 9.8005 0. 548
Ly = | 12 0183 0.182 16.792 0158
LI = ] 13 0040 0107 17.122 0194
Ll & Bl 14 -0.101 -0.070 19.271 0155
LI * 15 0.046 0.050 19.724 0183
' ' 16 0051 -0.020 20274 0208
L = L] 17 O 104 0093 225968 0163
L1 = Bl 18 -0.066 -0.097 23540 0171
' ' 19 -0.019 0004 23619 0211
LI = L] 20 0067 0096 24.595 0217
LI * L] 21 0o.0868 0081 26.230 0198
(N 22 -0.080 -0.048 27 643 0188
[ 23 007 0038 268 881 0184
L =l 24 0109 0108 31519 0139
Lo = Ll 25 0109 0098 34174 0104
' ' 26 0025 0021 34 311 0127
L 27 0060 0039 35143 0135
' ' 28 o021 0014 as . 2a2 0163
(1= B 29 0021 -0.083 35 341 0194
(N 30 0030 00268 35546 0223
' ' 3 0021 0013 35 644 0259
L 32 -0.059 -0077 36 459 0269
[ 33 0015 -0010 36514 0309
= 34 -0 145 -0 149 41 520 0176
v a5 0030 0039 41739 0201

' B [ = | 36 0244 0180 S56 0684 0018

Figure 1.6: Correlogram of the residuals of the GARCH (1, 1) Model

DISCUSSSION

First, the series was analyzed using the ARIMA model. The
series was first tested for stationarity. The test statistic was 1.437756.
The statistics is less than the absolute value of the test critical value at
1% level, 5% level and 10% level. This shows that the series is not
stationary. As a result, there need to be a regular differencing of the
series. After the differencing, an augmented Dickey- Fuller test was
conducted again for stationarity. This time, the new series DNMC was
found to be stationary. A correlogram of the differenced series was
constructed and the ACF created a spike at lag 12 which represents a
seasonal moving average model of lag 1. There is also a spike at lag 12
on the PACF of the differenced series. Two tentative models were
tested. They are SARIMA (0, 1, 0), (0, 0, 1)12 and SARIMA (0, 1, 0), (1, 0,
1)12. The AIC of the first model was less than that of the second model,
hence we use the second model. The estimated MA 12) coefficient for
this model D 0.367269.
The equation for this model is
Xe=pu+ Xe1+e+ O er-12
With this equation, estimates for the series can be gotten.
The AIC obtained for this model is 0.631776,
Next the GARCH (1, 1) is used. First we observed the time plot and
detect the presence of a non-constant variance. This is observed
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throughout the series. GARCH models may be suggested by an ARMA
type look to the ACF and PACF of the squared series.

As a result of the presence of a non-constant variance, a log
transform of the series is taken. The log of the series was test for
stationarity and it proved to be non-stationary. Then it was
differenced and the differenced series is stationary. Next, a check for
volatility clustering and heteroscedasity in the data series is carried
out. This is the ARCH test. To do this, an AR model was carried out
and the residual was tested using the ARCH test. The f-statistics and
T*R? Indicates the presence of ARCH in the data. This justified the use
of the GARCH model. A GARCH (1, 1) model was then carried out
using e-views software and the equation is:

Y:=0.044259 — 6.98E(-06) — 0.019847 yf,1+ 1.050086 Gtz_l
The AIC for this model is — 0.129605

CONCLUSION

In conclusion, comparing the two models, the AIC for the
SARIMA model is 0.631776 while that of the GARCH model is -
0.129605. The GARCH (1, 1), is a better model than SARIMA model
because the AIC is smaller here than that of the SARIMA model and it
provides a more real —world context when trying to predict the prices
and rates of financial instruments.
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