Shakarho Udi Pepple & Etuk Ette Harrison

Department of Mathematics Rivers State University Port Harcourt, Nigeria **Email:** etuk.ette@ust.edu.ng **Corresponding Author:** Ette Harrison Etuk

ABSTRACT

Money is a driving tool in any economy of a nation. As such the analysis and forecasting of Broad Money is of utmost importance to policy makers of any economy. The analysis shows the comparison of the performance of Nigerian Broad Money for GARCH and SARIMA models. In financial time series, the non-constant volatility is always high and GARCH model is better compared to the SARIMA model. The data used was collected from Central Bank of Nigeria website www.cenbank.org for 16 years (2000 - 2015). The time series were modeled using both methodologies and the analysis of the result shows that GARCH model outperform SARIMA models based on the minimum AIC. In the confines of this experiment SARIMA AIC was higher than that of GARCH, which showed that GARCH model is better than ARIMA model.

INTRODUCTION

Money is a driving tool that is very important for the economy of any nation. It acts as a transfer of value for goods and services and as a unit of value. It helps in decision making and serves as transaction balances. It also includes different financial instruments and some other types of deposits balances that can be converted to transaction money.

Broad money is the quantity of the money supply which includes more than just physical money such as currency and coins which is used in determing the availability of money in a country. The money supply is the total of all the assets in a country that consumers, producers, individuals and government can use as a form of payment or converted into demand deposits, treasury bills, debentures, ordinary shares and short-term investments which can be converted easily into money and vice versa. It is a monetary indicator usually used to check the total supply of money in the economy which is easy to track. The importance of Broad money cannot be overemphasized. It is used by the monetary authority, Central Bank of Nigeria by the use of interest rate, direction of credits and supply of money to regulate the level of activities in the economy in order to enhance price stability, investment for employment and economic growth and development.

Monetary policy emphasizes on more effective instruments in the rate of deregulation of money market preventing money from becoming the main cause of disturbances in the country. It allows the supply of broad money to expand to meet the needs of households and companies. An effective financial policy basically depends on the ability of an Economists and Statisticians to provide a well suitable model that can be of assistance in the on-going economic processes and forecast of the future development.

LITERATURE REVIEW

A GARCH process depends on past variance and past squared observations to model for present variance. They are usually used in financial aspect because of its efficiency in modeling assets proceeds and price increase. According to Engle (1982), it is a statistical model which is used by financial institutions for estimation of the volaticity of stock returns in financial market in which volaticity can transform in becoming more volatile throughout the periods of monetary crises or world procedures and less volatile throughout periods of relative quietness and steady economic growth. GARCH models aim to reduce mistakes in forecasting and facilitate the accuracy of ongoing predictions.

A comparative study was carried out by Sparks and Yurova using the ARIMA model versus the ARCH/GARCH models on daily equity prices of time series data for large companies proved that for one-step ahead forecast, ARCH/GARCH model perform better than the ARIMA model.

The SARIMA is an offshoot of the ARIMA models. These models were put together by American Statisticians G.E.P Box and Jenkins in 1976. The Box Jenkins approach invents a systematic class of model called ARIMA (Autoregressive Integrated Moving Average) models to

hold time correlated forecasting and modeling (Shumway and Stoffer, 2010). The observed data in this methodology are assumed to follow a multiplicative model. These models include the autoregressive model of order P, AR (p), the moving average model of order q, MA (q), the autoregressive moving average model, ARMA (p, q), the ARIMA (Autoregressive Integrated Moving Average) model and the SARIMA (Seasonal Autoregressive Integrated Moving Average). The SARIMA model is helpful in situation where the time series data shows evidence of seasonality (i.e. timely occurrence with about the same intensity periodically). Many economists and fiscal time series are recognized to show some seasonality in their behavior.

Etuk (2012), used the seasonal ARIMA model to forecast the Nigeria consumer price index data from March 1963 to December 2003, the results reveal a seasonality of Lag 12 and a seasonal MA component to the model. The model used is $(0, 1, 1) \times (0, 1, 1)_{12}$ seasonal model which shows seasonality. An Autoregressive Integrated Moving Average (ARIMA) model, $(0, 1, 1) \times (0, 1, 1)_{12}$ is fitted to the series. A visual assessment of the actual and fitted plots reveals a close accord between the two. Some other statisticians that have done extensive work on the SARIMA model include: Helman (2011), Daniel and Adebisi (2013), Etuk and Igbudu (2013), Etuk and Ojekudo (2014), Ampaw *et al.*, (2013), Etuk *et al.*, (2013).

MATERIALS AND METHODS

The data for this analysis are Monthly Nigerian Broad Money from 2000-2015 collected from the website of Central Bank of Nigeria website. (E-views) software was used.

The Garch Model

GARCH means Generalized Autoregressive Conditional Heteroskedasticity. It is an econometric term invented in 1982 by Robert F. Engle. It is used where volatility is a crucial issue. Volatility is the degree of variation of data overtime as measured by the standard deviation.

The GARCH (P, Q) models involved the residual of a time series regression. The model is given by;

Let $Y_t = C + \varepsilon_t$

C is the deterministic part and the residual is modeled as $\varepsilon_t = \sqrt{\sigma_t} Z_t$.

$$\begin{split} E(\varepsilon_t) &= 0\\ \varepsilon_t^2 &= \sigma_t^2 Z_t^2.\\ E(\varepsilon_t^2) &= \sigma_t^2 \text{ and }\\ E(Z_t^2) &= \sigma_t^2.\\ \end{split}$$
Where, σ_t^2 is the conditional variance given as $\sigma_t^2 &= \omega + \alpha_1 E_{t-1}^2 + \alpha_2 E_{t-2}^2 + \alpha_3 E_{t-3}^2 + \ldots + \alpha_q E_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \beta_2 \sigma_{t-2}^2 + \beta_3 \sigma_{t-3}^2 + \ldots + \beta_p \sigma_t - p^2 \\ \end{aligned}$ Where in the original model Z_t have the unit normal density $Z_t \sim N$ (0:1).

The Sarima Model

The SARIMA methodology is a multiplicative model that is widely used by statisticians for analyzing time series data. It was invented by G.E.P. Box and Jenkins in 1976. It is preferred because of its high degree of accuracy. When the data to be analyzed is seasonal, the SARIMA (p,d,q) ×(P,D,Q)s is used. A non-seasonal ARIMA model is classified as an 'ARIMA' (*p*, *d*, *q*) model. $\Phi_P(B^s) \phi_P(B) \nabla_{s^D} \nabla^d x_t = \mu + \Theta_Q(B^s) \theta_q(B) W_t$,

$$\begin{split} & \varphi_{P}(B^{s}) \ \varphi_{p}(B) \ V_{s}^{D} \ V^{a} \chi_{t} = \qquad \mu + \mathcal{O}_{Q}(B^{s}) \ \partial_{q}(B) W_{t}, \\ & \varphi_{p}(B) = 1 - \varphi_{1}B - \varphi_{2}B^{2} \ \dots - \varphi_{p}B^{p} \ \text{(non-seasonal AR component)} \\ & \Phi(B^{s}) = 1 - \Phi_{1}B^{s} - \Phi_{p}B^{2s} \ \dots - \Phi_{p}B^{ps} \ \text{(seasonal MA component)} \\ & \theta_{q}(B) = 1 + \theta_{1}B + \theta_{2}B^{2} \ \dots + \theta_{q}B^{q} \ \text{(non-seasonal MA component)} \\ & \varphi_{q}(B^{s}) = 1 + \varphi_{1}B^{s} + \varphi_{2}B^{2s} \ \dots + \varphi_{q}B^{qs} \ \text{(seasonal MA component)} \\ & W_{t} = (1 - B)^{d} \ (1 - B)^{D}y_{t} \\ & \text{Where, } w, \text{ is the usually refers to as the Gaussian white noise processes.} \end{split}$$

RESULTS

First, SARIMA technique was used for the analyses of the data and in doing this, a time plot is first constructed which is given in Figure 1.1.

Figure 1.1: Time Plot of Nigerian Broad Money

A proper look at the plot shows the presence of a trend. In this case, we shall conduct an Augmented Dickey-Fuller (ADF) test to check if the data is stationary. The result is shown in Table 1.1 below.

0	J					
Null hypothesis: NMCS has a unit root						
Exogenous Constant						
Lag Length 0 (Automatic –based on SIC maxlag = 14)						
			t-Statistics	Prob *		
Augmented Dickey-Fulley	v test statistics		1,437756	0.9991		
Test critical values	1% level		-3.464643			
	5% level		-2.876515			
	10% level		-2.574831			
*MacKinnon (1996) one si	ded p-value					
	-					
Augmented Dickey-Fuller	Test Equation					
Dependent Variable D(NB	SD)					
Method: Least Square						
Date: 05/14/17 Time 16.3	1					
Sample (adjusted 2000M02	2 2016M02					
Included observations 194	after adjustments					
Variables	Coefficient	Std. Error	t-Statistics	Prob.		
NMCS (-1)	0.005854	0.003970	1.455396	0.1472		
С	0.056729	0.039459	1.449940	0.1487		
R-squared	0.010819	Mean dependent var.		0.101571		
Adjusted R-square	0.005585	S.D dependent var.		0.335524		
S.E of regression	0.334586	Akaike info criterion		0.658570		
Sum squared resid	21.15812	Schwarz criterion		0.692625		
Log likelihood	-60.89340	Hannah-Quinn criter.		0.672364		
F-statistic	2.067142	Durbin-Watson stat.		1.941331		
Prob(F-statistic)	0.152157					

Table 1.1: Augm	ented Dickey	-Fuller Unit 1	Root Test on	NMCS
Table L.L. Mught	chica Dickey	-I unci Onit i	κουι ττοι υπ	

The test statistic above shows that the data is non-stationary as such we take the first difference to make it stationary. A plot of the first difference is shown in figure 1.2.

CARD International Journal of Social Sciences and Conflict Management Volume 2, Number 4, December 2017

Figure 1.2: Time Plot of Differenced Series

A look at the time plot above shows that the first difference of the Nigerian Broad Money is a stationary data. An Augmented Dickey Fuller (ADF) test was conducted to confirm the stationary of the data. The result of the test is shown in table 1.2 below.

Table 1.2: Augmented Dickey-Fuller Test Result for Differenced Series

Null Hypothesis: DNM Exogenous: Constant Lag Length: 0 (Automa	CS has a unit root itic - based on SIC, n	naxlag=14)	
		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-14.47369	0.0000
Test critical values:	1% level	-3.464280	
	5% level	-2.876356	
	10% level	-2.574746	

*MacKinnon (1996) one-sided p-values.

```
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(DNMCS)
Method: Least Squares
Date: 07/24/16 Time: 09:10
Sample (adjusted): 2000M03 2016M03
Included observations: 193 after adjustments
```

Variable	Coefficient	Std. Error t-Statistic		Prob.
DNMCS(-1) C	-1.046406 0.107375	0.072297 0.025415	0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.523082 0.520585 0.337544 21.76176 -63.24044 209.4878 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.000518 0.487500 0.676067 0.709877 0.689759 2.008190

Correlogram of the First Differences

The correlogram of the first difference of the Nigerian Broad Money shows a spike at lag 12. This shows the presence of a seasonal

moving average (MA) of order 1. The correlogram of the first difference is given in Figure 1.3. The correlogram of the first difference is given in Figure 1.3.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
101	1 11	1	-0.046	-0.046	0.4239	0.515
(0)	100	2	-0.088	-0.091	1.9745	0.373
· D ·	1.11	3	0.046	0.038	2.3921	0.495
23 13	1.1.1	-4	0.016	0.012	2.4444	0.655
	12 12	5	-0.008	0.001	2.4577	0.783
(A. 1 A	1.11	6	0.012	0.012	2.4845	0.870
10	100	7	-0.100	-0.102	4.5144	0.719
101	1.1	8	-0.037	-0.045	4.7888	0.780
1 1	1.1.1.5	9	-0.004	-0.027	4.7924	0.852
101	3日 1	10	-0.084	-0.087	6.2508	0.794
(a) (a)	1. 1.	11	0.002	-0.003	6.2514	0.856
	1	12	0.277	0.272	22.316	0.034
50 J. 50	0.000	13	0.003	0.045	22.317	0.051
	1.1.1	14	-0.048	-0.009	22.800	0.064
1 1 1	1 1	15	0.029	-0.002	22.981	0.085
	1.4	16	-0.018	-0.047	23.052	0.112
1 (11)	1.10	17	0.045	0.026	23.497	0.134
10 1	10 1	18	-0.071	-0.090	24.573	0.137
1.6 1	1.1.1	19	-0.039	0.013	24.902	0.164
2.4	1.1.1	20	-0.003	0.012	24.904	0.205
- D	()	21	0.092	0.119	26.753	0.179
1.0	1.1.1	22	-0.045	0.017	27.200	0.204
- b	1.000	23	0.039	0.053	27.546	0.233
) 📖	(目)	24	0.149	0.080	32.483	0.115
(a) (b)	に目に	25	0.075	0.074	33.742	0.114
3 J	1 1 1	26	0.005	0.031	33,750	0.141
(a) (b)	1. 13. 1	27	0.045	0.040	34.208	0.160
(1)	1 1 1	28	0.035	0.061	34.495	0.185
(G)	100 1	29	-0.088	-0.112	36.260	0.166
1 b 1	1 (2)	30	0.027	0.075	36.424	0.195
10	0.60	31	-0.050	-0.022	37.018	0.211
10	1.1	32	-0.065	-0.042	38.014	0.214
1 1	181	33	-0.000	-0.039	38.014	0.252
•	C	34	-0.132	-0.134	42.168	0.159
	111	35	0.011	0.014	42.196	0.188
1 100	1 1	36	0.268	0.210	59.542	0.008

Figure 1.3: Correlogram of the First Differences

Estimation of the SARIMA (0,1,0)(0,0,1)12 Model

A look at the correlogram above suggests that the SARIMA model that suits the data is SARIMA (0, 1, 0) $(0, 0, 1)_{12}$ model. Recall that the SARIMA model is given by:

 $\varphi_p(B) \Phi_p(B^s) W_t = \mu + \theta_q(B) \Theta_q(B^s) e_t$

From the identified model, there is no non-seasonal AR and MA component. Also, there is no seasonal AR component. Thus, the model becomes:

 $W_t = \mu + \Theta_q(B^s) e_t$ and the resulting equation is: $1-B (X_t) = \mu + (1 + \Theta_1 B^{12}) e_t$ $X_t - X_{t-1} = e_t + \Theta_1 B^{12} e_t + \mu$ $X_t - X_{t-1} = \mu + e_t + \Theta_1 e_{t-12}$ $X_t = \mu + X_{t-1} + e_t + \Theta_1 e_{t-12}$

The estimation of the SARIMA (0, 1, 0) $(0, 0, 1)_{12}$ model and the result is given in table 1.3. From the result, the AIC is 0.631776.

Estimation Result of the SARIMA model

Dependent Variable: DNMCS Method: Least Squares Date: 07/24/16 Time: 09:22 Sample (adjusted): 2000M02 2016M03 Included observations: 194 after adjustments Convergence achieved after 6 iterations MA Backcast: 1999M02 2000M01

Variable	Coefficient	Std. Error t-Statistic		Prob.				
MA(12)	0.367269	0.071157 5.161353		0.071157 5.161353		0.071157 5.161353		0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.030391 0.030391 0.331005 21.14593 -60.28225 1.974518	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.102577 0.336153 0.631776 0.648620 0.638597				
Inverted MA Roots	.89+.24i .2489i 6565i	.8924i .24+.89i 65+.65i	.6565i 24+.89i 89+.24i	.6565i 2489i 8924i				

Correlogram of Residuals of the SARIMA Model

The model was found to be adequate as the residuals were uncorrelated. The MA(12) coefficient is 0.367269. The correlogram of the residuals of the model is given in Figure 1.4.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
14	1 040	1 1	-0.041	-0.041	0.3331	
	1 1 1	2	-0.045	-0.046	0.7261	0.394
1 11 1	(b)	3	0.067	0.054	1.3760	0.503
1 (1)	1 10 1	-1	0.046	0.048	1.7914	0.617
	1 1	5	-0.011	-0.002	1.8169	0.769
1 1 1	1. 1. 1	6	0.031	0.032	2.0135	0.847
	100 1	7	-0.102	-0.106	4.1212	0.660
10.1	1 (2)	8	-0.066	-0.074	4.9993	0.660
101	10 1	9	-0.054	-0.073	5.5894	0.693
10 1	101	10	-0.068	-0.074	6.5529	0.684
0.10	0.1.0	11	-0.004	0.002	6.5569	0.767
	1.0.1	12	-0.044	-0.039	6.9526	0.803
	1 1	13	-0.015	0.001	6.9998	0.858
10 1	(0.)	14	-0.051	-0.057	7.5405	0.872
	10 10	15	0.011	-0.003	7.5663	0.911
1.0	(0)	16	-0.038	-0.054	7.8673	0.929
1 11 1	1 1 1	17	0.060	0.039	8.6354	0.928
(IIII.)	C 1	18	-0.112	-0.125	11.365	0.837
1 1 1	101	19	-0.036	-0.061	11.643	0.865
0.00	1.1.1	20	0.041	0.011	12.014	0.885
	· D)	21	0.116	0.107	14.957	0.779
	F 1 1	22	-0.003	0.020	14.959	0.825
0 10	1 1 1	23	0.046	0.042	15.424	0.843
	i 🔤 i	24	0.098	0.097	17.591	0.779
3 10 3	(11 (25	0.061	0.049	18.424	0.782
	1 1 1 1	26	0.089	0.077	20.217	0.735
1.3 1.3	1 1	27	0.014	0.001	20.263	0.779
0 D	10 - 10 -	28	0.001	-0.002	20.264	0.820
10 1	10 1	29	-0.076	-0.078	21.584	0.800
() D (1 1 1	30	0.043	0.039	22.003	0.820
	1 1 1	31	0.001	0.043	22.004	0.854
()()()		32	-0.063	-0.031	22.928	0.852
1 1 1	1 1 1	33	-0.034	0.022	23.197	0.872
	E 1	34	-0.128	-0.126	27.073	0.756
0 0	1 1 1	35	0.003	0.041	27.075	0.795
A		36	0.248	0.261	41.893	0.197

Figure1.4: Correlogram of the Residual

THE GARCH MODEL

The first step is to check if the series can be analyzed using the GARCH model, then the time plot of the data is looked upon which shows spots of increased vibration sprinkled throughout the series .In order to make the variance to be constant we generate a new series which is the log of the original series. Let this new series be LNMCS. A line graph of DLNMC (which is the first difference of LNMCS) is given below:

Figure 1.5: Time plot of First difference of LNMCS

From the line graph, volatility clustering is obvious. Next we estimate an AR (1). Since our objective is to check for volatility clustering and interoscedasticity in the data series, we carry out a check for ARCH effects using the ARCH LM Test. The test result of this test is given in the table below:

Table 1.4: ARCHLM Test Result for NMCS

Heteroskedasticity Tes	t: ARCH			
F-statistic Obs*R-squared	0.208703 1.071774	Prob. F(5.18 Prob. Chi-Sc	2) Juare(5)	0.9585 0.9566
Test Equation Dependent Variable: R Method: Least Square Date: 05/14/17 Time: Sample (adjusted): 20 Included observations:	ESID^2 5 17:56 00M08 2016M0 188 after adju:	3 stments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	17.81745	5.200422	3.426154	0.0008
RESID^2(-1)	-0.016631	0.073981	-0.224805	0.8224
RESID^2(-2)	0.002736	0.073543	0.037202	0.9704
RESID-2(-3)	-0.024342	0.073533	-0.331031	0.7410
RESID^2(-5)	0.062783	0.072815	0.862227	0.3897
R-squared	0.005701	Mean depen	dent var	17.84669
Adjusted R-squared	-0.021615	S.D. depend	ent var	56.71145
And the second se	57.32108	Akaike info c	riterion	10.96661
S.E. of regression	THE PLANE WE WILL TAKE THE			
S.E. of regression Sum squared resid	597998.5	Schwarz crit	enon	11.06990
S.E. of regression Sum squared resid Log likelihood	597998.5 -1024.861	Schwarz crit Hannan-Qui	nn criter.	11.06990

The F statistics and T^*R^2 indicate the presence of ARCH in the data. This totally justifies the use of GARCH model. Next we specify the GARCH (1, 1) model and carry out the analysis. This analysis was carried out using the e-views software.

Estimation of the Model

Using e-view software, the estimation output of the GARC (1, 1)

is given in Table 1.5

Dependent Variable: DNMCS Method: ML - ARCH (Marquardt) - Normal distribution Date: 07/24/16 Time: 09:30 Sample (adjusted): 2000M02 2016M03 Included observations: 194 after adjustments Convergence achieved after 46 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)*2 + C(4)*GARCH(-1)

Variable	Coefficient	Std. Error z-Statistic		Prob.
С	0.044259	0.011858 3.732406		0.0002
	Variance	Equation		
C RESID(-1)^2 GARCH(-1)	-6.98E-06 -0.019847 1.050086	4.60E-05 -0.151579 0.004322 -4.592187 0.008763 119.8296		0.8795 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.030254 -0.030254 0.341200 22.46850 16.57168 2.030843	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.102577 0.336153 -0.129605 -0.062226 -0.102321

From the above, the estimate of the parameters is:

C = 0.044259

w = -6.98E - 06

 α = -0.019847

 β = 1.050086

Substituting these values into the tentative model, we arrive at an equation for model given as:

 $Y_t = 0.044259 - 6.98E(06) - 0.019847 y_{t-1}^2 + 1.050086 \sigma_{t-1}^2$

The correlogram of the residuals of the GARCH (1, 1) model is given in the Figure 1.6 below:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
141	1 14 1	1 1	-0.041	-0.041	0.3275	0.567
100 1	16 1	2	-0.087	-0.088	1.8118	0.404
	6 6	3	0.010	0.003	1.8317	0.608
() ()	()	4	0.093	0.087	3.5784	0.466
	4 4 4	5	0.014	0.024	3.6200	0.605
	(🚍)	6	0.138	0.157	7.4638	0.280
100 1	10.1	7	-0.087	-0.075	9.0099	0.252
	() ()	8	-0.011	-0.001	9.0344	0.339
3.1.3	10 1	9	-0.047	-0.073	9.4959	0.393
	1.1.1	10	0.018	-0.016	9.5594	0.480
S 1 4	() (11	0.034	0.035	9.8005	0.548
	(🚍	12	0.183	0.182	16.792	0.158
1 1 1	(💷)	13	0.040	0.107	17.122	0.194
	10 1	14	-0.101	-0.070	19.271	0.155
	(10)	15	0.046	0.050	19.724	0.183
() b)	64.6	16	0.051	-0.020	20.274	0.208
	() 個()	17	0.104	0.093	22.596	0.163
100 1	16 1	18	-0.066	-0.097	23.540	0.171
÷ 3 (3 + 3	16 6	19	-0.019	0.004	23.619	0.211
(a) 🖬 (() 個()	20	0.067	0.096	24.595	0.217
(a) (a)	() ()	21	0.086	0.081	26.230	0.198
100	(1 (22	-0.080	-0.048	27.643	0.188
() D)	() (23	0.075	0.036	28,881	0.184
(3) (1)	(💷 (24	0.109	0.108	31.519	0.139
() (()	25	0.109	0.098	34.174	0.104
(a. 1) a	1.1.1	26	-0.025	0.021	34.311	0.127
1 (3)	(b (27	0.060	0.039	35.143	0.135
(a. 12)	1.1.1	28	0.021	0.014	35.242	0.163
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	16 1	29	-0.021	-0.083	35.341	0,194
3 1 4	1 0 1	30	0.030	0.026	35.546	0.223
(a. 10)	1.1.1	31	0.021	0.013	35,644	0.259
0.00	100	32	-0.059	-0.077	36,459	0.269
	111	33	0.015	-0.010	36.514	0.309
		34	-0.145	-0.149	41.520	0.176
3 1 1	1 1 1	35	0.030	0.039	41.739	0.201
8a. 🚃	(💷	36	0.244	0.180	56.064	0.018

Comparative Performance of Garch and Sarima Techniques in the Modeling of Nigerian Broad Money

Figure 1.6: Correlogram of the residuals of the GARCH (1, 1) Model

DISCUSSSION

First, the series was analyzed using the ARIMA model. The series was first tested for stationarity. The test statistic was 1.437756. The statistics is less than the absolute value of the test critical value at 1% level, 5% level and 10% level. This shows that the series is not stationary. As a result, there need to be a regular differencing of the series. After the differencing, an augmented Dickey- Fuller test was conducted again for stationarity. This time, the new series DNMC was found to be stationary. A correlogram of the differenced series was constructed and the ACF created a spike at lag 12 which represents a seasonal moving average model of lag 1. There is also a spike at lag 12 on the PACF of the differenced series. Two tentative models were tested. They are SARIMA (0, 1, 0), (0, 0, 1)₁₂ and SARIMA (0, 1, 0), (1, 0, 1)12. The AIC of the first model was less than that of the second model, hence we use the second model. The estimated MA(12) coefficient for this model D 0.367269.

The equation for this model is

 $X_{t} = \mu + X_{t-1} + e_{t} + \Theta_{1} e_{t-12}$

With this equation, estimates for the series can be gotten.

The AIC obtained for this model is 0.631776,

Next the GARCH (1, 1) is used. First we observed the time plot and detect the presence of a non-constant variance. This is observed

throughout the series. GARCH models may be suggested by an ARMA type look to the ACF and PACF of the squared series.

As a result of the presence of a non-constant variance, a log transform of the series is taken. The log of the series was test for stationarity and it proved to be non-stationary. Then it was differenced and the differenced series is stationary. Next, a check for volatility clustering and heteroscedasity in the data series is carried out. This is the ARCH test. To do this, an AR model was carried out and the residual was tested using the ARCH test. The *f*-statistics and T*R² Indicates the presence of ARCH in the data. This justified the use of the GARCH model. A GARCH (1, 1) model was then carried out using e-views software and the equation is:

 $Y_t = 0.044259 - 6.98E(-06) - 0.019847 y_{t-1}^2 + 1.050086 \sigma_{t-1}^2$ The AIC for this model is - 0.129605

CONCLUSION

In conclusion, comparing the two models, the AIC for the SARIMA model is 0.631776 while that of the GARCH model is -0.129605. The GARCH (1, 1), is a better model than SARIMA model because the AIC is smaller here than that of the SARIMA model and it provides a more real –world context when trying to predict the prices and rates of financial instruments.

REFERENCES

- Ampaw, E. M, Akuffor, B. Opoku, L. S. & Lartey, S. (2013), Time Series modeling Of rainfall in New Juaben Municipality of the Eastern Region of Ghana, *Contemporary Research in Business and Social Sciences*, 4 (8), 116-129.
- Box, G. E. P. & Jenkins, G. M. (1976), Time Series Analysis forecasting and control. Oakland, C. A: Holden-Day.
- Daniel, E. & Adebisi, W. (2013), SARIMA Modeling of Passenger Flow at Cross line Limited, Nigeria.
- Dickey, D. A. & Fuller, W. A. (1978). Distribution of the Estimators of the Autogressive Time Series with a Unit Root, *Journal of American Statistical Association*, 74 (366), 427-431.
- Engle, R. F. (1982) Autoregressive Conditional Heteroskedasticity with estimates of the Variance of UK inflation. *Econometric, vol. 50,* 987 1008.

- Etuk, E. H. (2012). Forecasting Nigerian Naira US Dollar Exchange Rates by a Seasonal ARIMA model, *American Journal of Scientific Research*, 59, 71 – 78.
- Etuk, E. H. & Igbudu, R. (2013), A SARIMA fit to monthly Nigerian Naira -British Pound Exchange Rates, Rivers State, Science Press Ltd.
- Etuk, E. H., Moffat, I. U. & Chims, B. E. (2013) "Modeling monthly rainfall data of Port Harcourt, Nigeria by Seasonal box-Jenkins methods, *International Journal of Sciences*, Vol. 2, pp. 60 – 67.
- Etuk, E. H. & Ojekudo, N. (2014), Another look at the SARIMA modeling of the number of Dengue cases in Campinas, State of Saw Paulo, Brazil, Rivers State, *Pak Publishing Group*.
- Helman, K.,(2011) Sarima models for temperature and precipitation time series in Czech Republic for the period 1961-2008, *Aplimat-Journal of Applied Mathematics*, vol. pp 281-290.
- John, J. Sparks & Yuliya, V. Yurova (), Comparative Performance of ARIMA and ARCH/GARCH Models on Time Series of Daily Equity Prices for Large Companies. Department of Information and Decision Sciences, University of Illinois Chicago.
- Shumway, R. H. & Stoffer, D. S. (2010). Time Series Analysis and Its Applications with R. Examples. *New York: Springe*

Reference to this paper should be made as follows: Shakarho U. P. & Etuk E. H. (2017), Comparative Performance of Garch and Sarima Techniques in the Modeling of Nigerian Broad Money. *Intl J. of Social Sciences and Conflict Management*, Vol. 2, No. 4, 2017, Pp. 250-262