Miospores and Geological Boundaries in Maastrichtian to Lutetian Succession of Ajire -I Well, Anambra Basin, Nigeria

Lucas, F. A.
Department of Geology,
University of Benin, Benin-City, Nigeria
E-mail: drfalucas@gmail.com

Abstract

Evaluation and appraisal of biostratigraphically significant miospores in Ajire-I well, Anambra Basin allow the delineation of five geological stage boundaries from Maastrichtian to the Lutetian succession of the well. The delineated boundaries are Masstrichtian/Danian, Danian/Selandian, Selandian/Thanetian, Thanetian/ Ypresian and Ypresian/Lutetian respectively. Estimate of the numerical ages have been possible by the comparison of the miospore events with those of dinocysts recognized in the well. Five Eocene diagnostic miosporesMauriitidites crassiexinus, Grimsdalea pol ygonallis, Forma 'C', Psilatriclpites okeziei and Proteacidites otamirinensis, originally described from the upper Eocene Ogwashi -Asaba Formation, south-east Nigeria have their first stratigraphic occurrences in the Early Eocene. This is the first attempt in which miospores are being used in Nigeria to delineate the Paleocene epoch into three internationally recognized stages. It is envisaged that the information documented in this study would further refine the Nigeria Chronostratigraphy and bring it in-line with new standard global stratigraphy scale.

Keywords: Miospore; Geological Boundaries; Maastrichtian; Lutetian; Ajire-I Well; Anambra Basin; Nigeria.

INTRODUCTION

Ajire-I well is situated in the western part of Anambra Basin at Latitude $6^{\circ}{ }_{15}{ }^{\prime} \mathrm{N}$ and Longitude $6^{\circ} 45^{\prime} \mathrm{E}$ (Figure-I). Drilled in 1972 by Shell Petroleum Development Company of Nigeria (SPDC), it has a total penetrated depth of 2500 m . The well penetrated the thickest and most complete sub-surface Maastrichtian to Lutetian Succession in Southern Nigeria. Four sub-surfaces Lithostratigraphic Formation - Ajali Sandstone, Nsukka Coal Measure, Imo Shale and Ameki Sand were penetrated in the well. The Anambra basin is located
between the Benue trough in the North and Niger delta in the south (Fig.I). The Anambra Basin is a Cretaceous/Tertiary basin, which is the structural link between the Cretaceous Benue Trough and the Tertiary Niger Delta basin (Lucas and Ishiekwene, 2010). This sedimentary phase was initiated by the Santonian folding and uplift of the Abakaliki anticlinorium along the NE-SW axis, and the consequent dislocation of the depocenter into the Anambra Basin on the Northwest and the Afikpo syncline on the Southeast (Short and Stauble, 1967; Murat, 1972). The resulting succession comprises the Nkporo group, Mamu formation, Ajali sandstone, Nsukka formation, Imo formation and Ameki group. Hydrocarbon exploration in the Anambra Basin has been dependent on the abundant Maastrichtian coal deposits.

Fig. 1: Map of Southern Nigeria Sedimentary Basins showing Ajire-ı Well Location

MATERIALS AND METHODS

Fifty-one (5I) side wall samples were collected and subjected to standard palynological maceration involving different treatments of $\mathrm{HCl}, \mathrm{Hf}, \mathrm{HCl}$, Schultz's solution, KOH chemical digestions. The organic matter was recovered using zinc Bromide solution of 2.2
specific gravity. The organic residue was subsequently mounted on a glass slide with Canada balsam for microscopic analysis.

Out of the identified palynomorphs (dinocysts, acritarchs, pollen and spores) the pollen and spores were evaluated and appraised for their biostratigraphic utility to delineate geological stage boundaries in the well section. The comparison of the pollen and spores events with those of dinocysts and acritarchs, allowed the estimation of the numerical ages of the stage boundaries and some pollen and spores events where ever possible (Fig.3). All the numerical ages cited in this paper are of global foram zones. The reference slides were curated in the micropaleontological laboratory, centre for palynological studies, at University of Sheffield, England. All coordinates given in this paper are reverse England finder coordinates.

RESULTS AND DISCUSSION

Age and stage boundaries
 K/T (Maastrichtian-Danian) Boundary

The K / T boundary is at 1835 m based on the quantitative occurrence of Ericacea pollen and first stratigraphic occurrence of Proxapertites cursus (van der Hammen, 1956) at the interval which suggests Paleocene age. This pollen type according to Van der Hammen (1956) occurs for the first time just about the Maastrichtian - Danian (Paleocene) boundary in South America. This event which is being reproduced in the Ajire-s well, also agrees with the study of Germeraad et al (1968) where the pollen was found to occur for the first time just above the Maastrichtian - Danian (Paleocene) boundary in Nigeria. Furthermore, the oldest occurrence of Mauritidites crassibaculatus (Van Hoeken-Klinberg; 1964) is at 192Im just below the Maastrichian - Danian boundary. This is similar to the observation of Van der Hammen (1956) in the Maastrichain - Danian boundary of South America. The cooccurrence of P. cursus and the dinocyst Damassadinium californicum FAD at 1835 m suggests a numerical age of 65.0 Ma . D. californicum FAD is a global marker for K / T boundary.

Fig. 2: Lithostratigraphic section and Age of Ajire-I well

Fig. 3: Quantitative stratigraphic distribution of pollen and spores in Ajire - I

* LC: LATE CRETACEOUS

ME: MIDDLE EOCENE

Danian

The Danian is defined as the interval from FADs P. cursus and Echitriporites trianguliformis at 1835 m (K / T boundary) to the FAD Retidiporites magdalenensis at 1620 m , other bio-events in the Danian are FADs P.operculatum and Monoporites annulatus.

Danian/Selandian boundary

This could be delineated by the $F A D$ Retidiporites magdalenensis at 1620m which marks the top of the Danian. The first down-hole influx of Proxapertites tertiaria defines the base of Selandian at 1572 m . The base is also characterized with scarcity and low diversity of miospores (Fig.3). Comparison of the miospore event at the boundary with the FAD of Apectodinium homomorphum at 1620 m suggests 61.0Ma for top Danian and 60.90 Ma for base Selandian.

Selandian

The Selandian is defined as the interval from the first down-hole influx of P. tertiaria at 1572 m to the extinctions of Bombax ceiba and Ericacea pollen at 1086 m . Bombax ceiba is restricted to the Selandian in Ajire-1 well. The FAD of Anacolosidites luteoides at 1524 m is diagnostic of earliest Selandian which occurs just above the base of Selandian. Van Hoeken -Klinkenberg (1964) recorded Mauritiidites crassibaculatus extinction in three selected Nigerian wells: Owan-I, Egoli-r and Gbekebo-r in the late Paleocene. The extinction of this pollen is at rizrm in the late Selandian just below the Selandian/Thanetian boundary.

Selandian/Thanetian boundary

This is at 1086 m based on the concurrent extinctions of Bombax ceiba and Ericacea pollen type and FADs of Crassoretitriletes vanraadshoovenii and Spermatites $S p$ at 1086 m .

Thanetian

The Thanetian is defined from the extinction of Bomba ceiba and Ericacea pollen type at 1086 m to the FADs of Psilatricolpites okeziei and Scrabratriporites simpliformis at 936 m which delineates the base
of Ypresian. The top of Thanetian is just below this interval at 960 m . The Thanetian as a whole in this well is characterized by scarcity and /or low diversity of miospores (Fig. 3). Van der Hammen and Mutis (1965) noted the extinction of \mathcal{R}. Magdalenensis in the Paleocene of Colombia, Germeraad et al (1968) also noted the same event in the late Paleocene of Nigeria. The extinction of R. Magdalenensis is at ro22m in Thanetian of Ajire-I well section.

Thanetian/ $/$ presian boundary

This boundary is characterized by scarcity and /or low diversity of miospores. The boundary is at 936 m , based on the FADs Psilatricopites okeziei and Scrabratriporites simpliformis respectively.

Ypresian

The Ypresian is delineated from FADs P. Okeziei and S. simpliformis to the extinction of Anacolosidites Sp. at 391m which defines the Ypresian - Lutetian boundary. The Ypresian is characterized by typical Eocene miospores recovered by Jan du chene et al (1978) from Upper Eocene Ogwashi - Asaba Formation South East Nigeria. These miospores include P. Okeziei, Proteacidites otamirinensis, Psilatriporites rotundus and Forma ' C '. Other Eocene age diagnostic miospores restricted to ypresian in this well are S. corrugatus, Anacolosidites S_{p}. and Retribrevitricolpites trianguliformis.

Ypresian/Lutetian boundary

The extinction of Anacolosidites Sp . at 39rm delineates the Ypresian/Lutetian boundary. This event has been used over the years by Shell Petroleum Development Company of Nigeria for the recognition of the Ypresian - Lutetian boundary in Nigeria. This event co-occurs with the FAD Baltisphaeridium nanum. There is an influx of B. nanum an acritarch species at the boundary. The numerical age is 49.0 Ma .

Lutetian

The Lutetian is represented by two samples recovered from 39rm and 305 m intervals. One Eocene diagnostic pollen, Grimsdalea polygonallis reported by jan du chene et al (1978) from the upper Eocene of Nigeria has its FAD in the Lutetian of Ajire-r well section.

CONCLUSION

Miospores recovered from Ajire-r well permitted the delineation of geological stage boundaries from Maastrichtian to Lutetian succession. These are Maastrichtian/ Danian/ Selandian/ Thanetian/ Ypresian/ Lutetian respectively. Comparison of the events at each boundary with assemblages and miospore records in other parts of the world, and those of the dinocyst and acritarch observed in this well allows estimate of their numerical ages. Five Eocene diagnostic miospores- Mauriitidites crassiexinus, Crimsdalea polygonallis, Forma 'C', Psilatricolpites okeziei and Proteacidites otamirinensis which were originally described from upper Eocene Ogwashi-Asaba Formation by lan du chene et al (1978) have their first stratigraphic occurrences in Early Eocene of the well. The information documented in this paper would contribute to the interpretation of sub-surface sequence stratigraphy of Southern Nigeria sedimentary basin.

ACKNOWLEDGEMENTS

l am grateful to the Nigerian National Petroleum Corporation for the opportunity of an in-service training during the critical stage of this study at Sheffield. The paper is a part of Ph.D. degree research work carried out under the supervision of Dr. Roger Neves, the then Director, Industrial Palynology Unit, University of Sheffield, Sheffield, England. Funding received from British Council and EEC is gratefully acknowledged. I am also grateful to Dr. Roger Neves for the supervision of my Ph.D. degree work.

REFERENCES

Germeraad, J. H., Hopping, C. A. and Muller, J., 1968. Palynology of Tertiary Sediments from tropical areas. Review of palaeobotany and palynology, vol. 6, pp. 189-348, pi-I-18.

Hammen, T. Van der and Mutis, C. G. D., 1965. The Palaeocene flora of Colombia. leidse Geol. Mededel, vol. 35, pp. ro5-ir6.

Hammen, T. Van der., 1956. A palynological systemmatic nomenclature. Colombia Inst. Geol. Nac. Bol. Geol., vol. 4/23), pp. 63-ioi, pi. I-I2.

Jan du Chene, R. E, Onyike, M. S. and Sowunmi, M. A., 1978. Some new Eocene pollen of the Ogwashi-Asaba Formation, South eastern Nigeria. Rev. Esp. micropal., vol. io(2), pp. 285322, pI.I-2.

Lucas, F. A. and Ishiekwene, E., 2010. Miospore (Pollen and Spore) Biozonation Model for Late Cretaceous - Tertiary Succession of Gbekebo-I Well, Benin Flank, Anambra Basin, Nigeria. World lournal of Applied Science and Technology, vol. 2(2), pp. 303-308.

Murat, R. C., 1972. Stratigraphy and Paleogeography of the Cretaceous and Lower Tertiary in Southern Nigeria. In: Dessauvagie, T. F. J., Whiteman, A.). (Eds.), African Geology. University of Ibadan Press, Nigeria, pp. 251-266.

Short, K. C. and Stauble, A. J., 1967. Outline of Geology of Niger Delta. Bull. Amer. Assoc. Pet. Geol., vol. 5I(5), pp. 76i-779.

Van Hoeken - Klinkenberg, P. M. J., 1964. A palynological investigation of some upper Cretaceous sediments in Nigeria. Pollen et spores, vol. 6|r|, pp. 209-23I, pi.I-7

PLATE ${ }_{\text {I }}$

83 Lucas, F. A.

PLATE ${ }_{\text {i }}$

Miospores photographs indicating the slide number, England Finder's coordinates and magnification of individual specimen.
I. Anacolosidites sp. $\mathrm{Al}_{2248 \mathrm{~B}}^{1} \mathrm{Q}_{19} / \mathrm{I} \mathrm{X}_{750}$
2. Bacutriporites orluensis $\mathrm{Al}_{2059} \mathrm{BI}_{\mathrm{I}} \mathrm{L}_{26 / 2} X_{750}$
3. Cramwellipollis gombensis $\mathrm{Al}_{2654} \mathrm{~B}_{1} \mathrm{E}_{16} 6 / 2 \mathrm{X}_{750}$
4. Ctenolophonidites costatus A$)_{\text {Ioi } 5} \mathrm{~B}_{2} \mathrm{U}_{32} / \mathrm{I} \mathrm{X}_{600}$
5. Forma' C^{\prime}) an du chene, $\mathrm{Al}_{2895} \mathrm{~B}_{2}$ oir $43(4) \mathrm{X}_{750}$
6. Grimsdalea polygonallis $\mathrm{Al}_{1015} \mathrm{~B}_{2} \mathrm{Q}_{32} / 4 \mathrm{X}_{500}$
7. Leiotriletes triangulus $\mathrm{Al}_{491} \mathrm{AB}_{2} \mathrm{o}_{34} / 3 \mathrm{X} 600$
8. Mauriitidites crassiexinus $\mathrm{Al}_{2745} \mathrm{~B}_{2} \mathrm{~T}_{32} \mathrm{X}_{750}$
9. Monocolpites baculatus $\mathrm{Al}_{2400} \mathrm{BI}_{1} \mathrm{G}_{3} 6 / 3 \mathrm{X}_{500}$
10. Monocolpites marginatus $\mathrm{Al}_{224} \mathrm{BB}_{1} \mathrm{E}_{22} \mathrm{X}_{600}$
ii. Monoporites annulatus $\mathrm{Al}_{2895} \mathrm{BI}_{1} \mathrm{E}_{39} / 4 \mathrm{X}_{750}$
12. Praedapollis africanus $\mathrm{Al}_{2574} \mathrm{Bi}_{1} \mathrm{~F}_{3} 6 \mathrm{X}_{750}$
13. Proteacidites otamirinensis $A 1_{19} 8_{1} B_{2}, X_{19} / 2 X_{500}$
14. Proxapertites cursus $\mathrm{Al}_{2378} \mathrm{BB}_{2} \mathrm{U}_{15} \mathrm{X}_{500}$
15. Psilatricolpites okeziei $\mathrm{A}_{2} 2654 \mathrm{BI}_{1} \mathrm{P}_{21} / \mathrm{I} \mathrm{X}_{750}$
16. Retibrevitricolporites triangulates $\mathrm{Al}_{1918} \mathrm{BB}_{2}, \mathrm{Q}_{35} / 2 \mathrm{X}_{500}$
17. Retidiporites magdalenensis $\mathrm{Al}_{3405} \mathrm{~B}_{4} \mathrm{Q}_{34} \mathrm{X}_{500}$
18. Striatricolpites catatumbus $\mathrm{Al}_{237} 8 \mathrm{~B}_{\mathrm{I}} \mathrm{T}_{18} 8 / \mathrm{I}(3) \mathrm{X}_{750}$
19. Syncolporites corrugatus $\mathrm{Al}_{2895} \mathrm{~B}_{2} \mathrm{D}_{3} 6 / 3 \mathrm{X}_{9} 00$
20. Verrutricolporites irregularis $\mathrm{Al}_{2} 895 \mathrm{~B}_{2} \mathrm{R}_{25} \mathrm{X}_{750}$

