Assessment of Cassava Production in Ngor-Okpala Local Government Area, Imo State, Nigeria

Jane Munonye; Joy N Obi & Okere Happiness Chikadibia

Department of Agricultural Economics, Alex Ekwueme Federal University of Ndufu, Alike, Ebonyi State
Department of Agriculture Economics, Ext. and Rural Development, Imo State University, Owerri

Email: munojane@gmail.com; Jnamaka1@yahoo.com

ABSTRACT

The study assessed the production of cassava in Ngor-Okpala Local Government Area of Imo State. The specific objectives were to: identify socio-economic characteristics of the farmers; identify their cropping system; determine cost and returns of cassava production; and identify problems of production. To achieve these, a sixty cassava farmers was selected. A set of structured questionnaire was the instrument for data collection. Data collected were analyzed using descriptive and inferential statistics. Results showed that on socio-economic, the mean age of the farmers was 36.32 years, and they were mostly males (55%) and had mean household of 7 persons. They had mean farm size of 2.7 plots and were well educated. The cost and returns analysis showed that for every N1.00 invested they made 63kobo, which shows that cassava production was profitable and economically viable. Their major cropping system was sole cropping. Sex variable, farm size and experience were statistically significant at 10%, 1% and 5% levels respectively. Major problems of production were high cost of inputs and inadequate funds. It is recommended that farmers should form production cooperative society to forestall the problems of inadequate fund.

INTRODUCTION

Cassava (Manihot esculenta) is a dicotyledonous perennial shrub. It is one of the most common crops of humid tropics growing up to 4 meters or more in height and belongs to the family Euphorbiaceae. It is commonly grown in the tropics for its starchy tuberous root that is mainly consumed by humans and animals. It also used as raw materials for industry (Nweke, 2004). Africa produces over 54% of the world’s cassava, with Nigeria taking the global lead with a production of about 54.8 million metric tonnes in 2014 (FAO, 2014). Nigeria’s average yield of 7.7 metric tonnes per hectare, is very low compared to the 23.4 metric tonnes and 22.2 metric tonnes average yields per hectare produced respectively in Indonesia and Thailand, the other leading cassava producers in the world (FAO, 2014). Nigeria has consistently maintained its position as the world’s largest producer of cassava, accounting for 18% and 35% of the total cassava output in the world and in Africa, respectively. The global production trend put the country’s annual production figure at about 38 million tonnes in 2010 (FAOSTAT, 2013). Despite the potential of cassava in addressing the increasing food demand of the growing population in Nigeria as well as its diverse uses, studies (IITA, 2011; Ogunleye et al, 2014) have shown that the yield and profit acquired from cassava farming among small holder cassava farmers in Nigeria remained incredibly low. One of the major constants to increased productivity and profitability among small holder cassava farmers is the absence of appropriate polices, programmes and local institutions that could help to mobilize production resources, induce and encourage the adoption of improved technologies and guarantee secured markets for their products (ICA, 2010; NSSP, 2011). In Ngor-opkala cassava crop farming has been in existence for a very long time, but cassava farmers are still having some challenges in terms of low productivity. The cassava farmers in Ngor-Opkala Local Government Area are faced with
lack of credit facilities, inadequate lands, lack of fertile lands, lack of improved varieties of cassava cutting and illiteracy.

Objectives of the Study
The study is to assess cassava production in Ngor-okpala Local Government Area. Specific objectives are to: describe the socio-economic characteristics of cassava farmers in the study area; identify the farming systems of the farmers in the study area; determine the cost and returns of cassava production in the study area; identify the problems militating against cassava production in the study area;

METHODOLOGY
The data collected was subjected to both descriptive and inferential statistical analysis. Descriptive statistics include frequency distribution, mean and percentage, while inferential statistics include multiple regression analysis. Objectives i, ii, iv, were analyzed using mean frequency distribution and percentages. Objective iii was analyzed using costs and return analytics formula which is Ω = TR – TC.

Where

\[\Omega = \text{profit} \]
\[TR = \text{total revenue/returns} \]
\[TC = \text{total costs} \]

Hypothesis was tested using ordinary least square (OLS) regression implicitly stated as:

\[Y = f (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, e) \]

Where

\(Y \) = Profit
\(X_1 \) = Age (years)
\(X_2 \) = Sex (male = 1/ female = 0)
\(X_3 \) = Education (years)
\(X_4 \) = occupation (farming = 1 otherwise = 0)
\(X_5 \) = farm size (ha)
\(X_6 \) = Experience (years of being in farming)
\(X_7 \) = household size (number)
\(X_8 \) = Price (N)
\(X_9 \) = quantity (kg)
\(e \) = error term

RESULTS AND DISCUSSION
Cost and Returns of Cassava Production
Cost and returns of an average cassava farmer is contained in Table 4.8. It shows that a farmer spent an average of ₦27,580 for cassava production in a year and realized a sum of ₦45,000. The farmer therefore made a net return of ₦17,420. This shows that cassava production in the study area was profitable. The cassava production was also economically viable because for every ₦1.00 invested in the business, the investor made a surplus of 63kobo.
Table 1: Costs and Returns of Cassava Farmer

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue [15 bags x 3000]</td>
<td>45,000.00</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
</tr>
<tr>
<td>Variable cost</td>
<td></td>
</tr>
<tr>
<td>Labour [clearing, cultivation, weeding, harvesting]</td>
<td>11,966.67</td>
</tr>
<tr>
<td>cuttings [3 bundles x N800.00]</td>
<td>2,400</td>
</tr>
<tr>
<td>Fertilizer [3 paints x N1200]</td>
<td>3,600</td>
</tr>
<tr>
<td>Pesticide</td>
<td>2,200</td>
</tr>
<tr>
<td>Marketing [Transport]</td>
<td>2,300</td>
</tr>
<tr>
<td>Total variable cost</td>
<td>22,466.67</td>
</tr>
<tr>
<td>Fixed cost</td>
<td></td>
</tr>
<tr>
<td>Land [rent]</td>
<td>2,150</td>
</tr>
<tr>
<td>Interest on loan</td>
<td>666.67</td>
</tr>
<tr>
<td>Depreciation provision</td>
<td>2,296.67</td>
</tr>
<tr>
<td>Total fixed cost</td>
<td>5,113.34</td>
</tr>
<tr>
<td>Total cost [22,466.67 + 5,113.34]</td>
<td>27,580.01</td>
</tr>
<tr>
<td>Net returns [A-B]</td>
<td>17,420</td>
</tr>
<tr>
<td>Returns On Investment [ROI]</td>
<td>0.63 or 63%</td>
</tr>
</tbody>
</table>

Source: field survey, 2018

Determinants of Net Returns of Cassava Farmers

The finding in Table 4.10 contains information about an estimated multiple regression model relating socio-economic characteristics of cassava farmers and their net returns. The model was estimated in four functional forms. The double log form was chosen as lead equation. It provided the best fit and has the highest number of significant variables. The coefficient of determination \(R^2 \) of 0.58 shows that up to 58% variations in the net returns were explained by the set of socio-economic characteristics of the farmers significant at 10% level. Farm size was significant at 1% level while experience was significant at 5% level. The variables being significant at 1% show that they influenced the net returns of the farmers so much. The coefficient of age, sex, farm size and experience were positively related to net return. Education, occupation type and household size were negatively related to net returns indicating that increases or changes in them decreased net returns of the farmer. The F-ratio was statistically significant at 1% showing the overall significant of the model.

Table 2 Estimated Parameter of Cassava Production

<table>
<thead>
<tr>
<th>Variable</th>
<th>Linear</th>
<th>Exponential</th>
<th>Semi-log</th>
<th>Double log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>8550.976</td>
<td>(4.593)**</td>
<td>9.231****</td>
<td>2315.35**</td>
</tr>
<tr>
<td>Age (x_1)</td>
<td>33.353</td>
<td>(1.203)</td>
<td>0.002</td>
<td>1097.615</td>
</tr>
<tr>
<td>Sex (x_2)</td>
<td>-22.363</td>
<td>(-0.196)</td>
<td>0.000</td>
<td>2307.80</td>
</tr>
</tbody>
</table>

* * *
Constraints of Cassava Production
The result in Table 4.11 Shows information about constraints of cassava production as perceived by the farmers; high cost of inputs ranked first among the problems. This was followed by lack of fund for production. The producers also ranked inadequate land for cassava production third among the problems. Incidence of diseases and pests was ranked lowest among the problems.

Table 3: Distribution of the Farmers According to Perceived Constraint of Production

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cost of inputs</td>
<td>51</td>
<td>85.00</td>
</tr>
<tr>
<td>Lack of fund</td>
<td>48</td>
<td>80.00</td>
</tr>
<tr>
<td>Inadequate land</td>
<td>44</td>
<td>73.33</td>
</tr>
<tr>
<td>High cost of labour</td>
<td>41</td>
<td>68.33</td>
</tr>
<tr>
<td>High cost of transportation</td>
<td>40</td>
<td>66.67</td>
</tr>
<tr>
<td>Inadequate extension contact</td>
<td>37</td>
<td>61.67</td>
</tr>
<tr>
<td>Low soil fertility</td>
<td>29</td>
<td>48.33</td>
</tr>
<tr>
<td>Lack of collateral</td>
<td>22</td>
<td>36.67</td>
</tr>
<tr>
<td>Poor road infrastructure</td>
<td>18</td>
<td>30.00</td>
</tr>
<tr>
<td>Diseases and pests</td>
<td>9</td>
<td>15.00</td>
</tr>
</tbody>
</table>

Source: field survey, 2018

CONCLUSION
The study on assessment of cassava production had shown that cassava production was not only profitable but also worthwhile investing in. It also evidenced that profitability of cassava production is related to farmers’ socio-economic characteristics and farmer’s expertise determined their level of profit.
REFERENCES
Ebukibaand Elizabeth [2010].“ Economic Analysis Of Cassasva Production In Akwa-Ibom State “. B.Sc Thesis, Department of Agricultural Economics University Of Abuja, Nigeria.

INE (Instituto Nacional De Estatisticas) National Institute of Statistics. Censo Agro-Pecuario | Agriculture and Livestock Census 2009-2010: Resultados Definitivos

Ministry of Lands and survey, Owerri, Imo State. 2012.

Mohammed, M. Abdul-Kareem, Department of Agricultural economics, Ankara University, 06110 Diskapi, Ankara Turkey and Tamer Isgin, Department of Agriculture Economics, Harran University, 63000 Odmanbey, Sanliurfa Turkey.

Ogisi, O.D., Begho, T. And Alimeko, B.O | 2013 | Productivity And Profitability of Cassava (Manihot Esculenta) In Ika South and Ika North East Local Government Area Delts State ,Nigeria | B.sc Thesis , Department Of Agricultural Economics And Extension, Delta State University. Journal Of Agriculture and Veterinary science volume 6 (1) 52-56.

