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ABSTRACT 

Accurate rainfall forecasting is very important to the economic development of a 

country. It is not just important to the government but also to individuals, farmers 

and private companies. This paper focuses on comparing the performances of two 

approaches to seasonal time series analysis. These approaches are the pseudo-

additive mixed Fourier series approach and the SARIMA approach. The pseudo-

additive Fourier series approach decomposes a time series into the traditional 

components in a mixed model. This is suitable for a time series with very small or 

zero values like that in the data used, while the ARIMA model has significant 

advantages especially in short run forecasting  saz [2011], The time series analysis 

methods were used to model the monthly rainfall of Uyo in Akwa Ibom state, 

Nigeria . The data were monthly value for ten[10] years .A comprehensive outline of 

both analysis methods are presented in this paper as well as the advantages each 

have after the other . The performances were evaluated based on three[3] statistics; 

mean absolute error [MAE], mean absolute percentage error[MAPE] and mean 

squared deviation [MSD], The result at the end showed that the SARIMA model has 

a smaller MAE, MAPE and MSD values .As such, it is the better model. 

 

INTRODUCTION 

Rainfall is a very important feature 

of our climate and its importance 

(economically and otherwise) 

cannot be overemphasized. For an 

economy like ours where 

diversification into Agriculture is 

being encouraged, rainfall is a very 

important element which cannot 

be overlooked. Other sectors 

which are also vulnerable to 

weather variability include 

tourism, mining, construction etc. 

 

One of the characteristics of 

rainfall in Nigeria is seasonality. 

The rainy season is experienced 

from March till October, with peak 

rainfall in August. The dry season 

follows from late October till early 

March. Sometimes due to too 

much rainfall, soil moisture 
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reaches saturation levels and the 

soil is no longer able to absorb 

more rainwater. This leads to over 

flooding which coincides with the 

peak of the rainy season. In 2012, 

there was flooding in Nigeria. 

According to a report on 

Punchng.com (2015), the total 

value of damaged physical and 

durable assets caused by floods in 

the most affected states was 

estimated to have reached 

#1.45trillion. There is also the issue 

of drought. It is on record that the 

1972/73 drought drastically 

reduced the contribution of 

agriculture to the Gross Domestic 

Product in Nigeria from 18.4% in 

1971/72 to 7.3% in 1972/73.These 

and other issues have made the 

forecasting of rainfall to be of great 

importance. 

 

Some models have been applied to 

various time series on rainfall, 

chief of which is the Seasonal 

Autoregressive Integrated Moving 

Average Model (SARIMA). 

However, this paper seeks to 

compare the popular SARIMA 

approach to a frequency domain 

based approach using linear 

regression and Fourier series 

analysis methods. Both approaches 

shall be used to model the 

available data and the results of 

the estimated values compared 

using relevant statistics. 

 

LITERATURE REVIEW 

Traditional time series analysis 

methods involved the 

identification, decomposition and 

estimation of the basic 

components. Etuk and Uchendu 

(2009) listed the basic components 

of a time series as the trend, 

seasonal component, cyclical 

component and irregular 

component. In a draft guide to 

seasonal adjustment with X-1- 

ARIMA, the United States Office of 

National Statistics, Time Series 

Analysis Branch (2007), discussed 

the decomposition models and 

outlined them mathematically as; 

a. Xt = Tt+St+It 

 (Additive model) 

b. Xt = Tt× St × It 

 (Multiplicative Model) 

 

In practice, most economic time 

series exhibit a multiplicative 

relationship and hence, the 

multiplicative decomposition 

usually provides the best fit. 

However this decomposition 

approach cannot be implemented 

if any zero or negative values 

appear in the time series. This is 

because it is not possible to divide 

a number by zero. This leads to 

another decomposition model. 
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c. Xt =Tt(St + It + 1)  

      (Pseudo additive model) 

 

Where,  

Tt= linear trend 

St = seasonal component 

It = irregular component 

For a time series that contains very 

small or zero values like that 

which is used for this work, the 

Pseudo-additive model is used. In 

this model, both the seasonal and 

irregular component are centered 

around one. Etuk and Uchendu 

(2009) states that the trend can be 

calculated using the method of 

ordinary least squares. The 

seasonal component is based on 

the work of Joseph Fourier who 

introduced the series 
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The equation above seeks to 

represent a periodic series as a 

sum of sinusoidal components. 

Lewis (2003) applied Fourier 

Analysis to the forecasting the 

inbound call time series of a call 

centre. He found out that working 

in the frequency domain 

overcomes many difficulties 

encountered in the time domain. 

Omekara et al., (2013) modeled the 

Nigerian inflation rates using 

Fourier series and periodogram 

and disclosed that it is better than 

the time domain approach because 

of their simple way of modeling 

seasonality and eliminating peaks 

without re-estimating the model. 

 

Using the SARIMA methodology, 

a Time series with span of 

seasonality s, is said to follow a 

multiplicative (p, d, q)   (P, D, Q)s 

seasonal ARIMA model if 

A(L)Φ(Ls) d sdXt = B(L)Θ(Ls)et  

A(L) and B(L) refers to the non-

seasonal AR component and MA 

components respectively. Φ(Ls) 

and Θ(Ls) are the respective 

seasonal AR and MA component. 

et is the error term and  d      sd 

are the regular and seasonal 

differencing respectively required 

to make the Time series stationary. 

A time series is said to be 

stationary if it has a constant 

mean, a constant variance and an 

autocorrelation that is a function of 

the lag separating the correlated 

values (Etuk, 2013). Most real-life 

Time series are non-stationary. 

And since stationarity is a 

requirement for using this 

approach, Box and Jenkins 

proposed that such a series could 

be made stationary by differencing 

with an appropriate order. 

A very useful operator is the 

backward linear operator (B) or lag 

operator defined by: 

BXt = Xt-1 

B2Xt =BBXt =BXt-1 =Xt-2 
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B3Xt =BB2Xt =BXt-2 = Xt-3 

BkXt = Xt-k 

Since the mean is constant 

throughout the series, 

Bμ = μ 

 

In order to make a non-stationary 

series to become stationary, we 

apply the difference operator ( ), 

which is defined by 
      

   t = (1-B)Xt= Xt– Xt-1 

 2Xt= (1-B)2Xt= (1-2B+B2)Xt 

=Xt – 2Xt-1 + Xt-2 

The stationary series Wt obtained 

as the dth difference ( d) of Xt is 

given by 

Wt = dXt = (1-B)dXt 

For a seasonal Time series, a 

seasonal differencing is first 

carried out and then a regular 

differencing, if still required. 

 

METHODOLOGY 

The data for this work are monthly 

rainfall data for the city of Uyo in 

Nigeria for ten (10) years. This 

data was used in a research 

published in the Asian Journal of 

Mathematics and Statistics (ISSN 

1994-5418). 

 

Using the frequency domain 

approach first, recall that the 

model is given by  

Xt =Tt(St + 1) 

The trend is obtained by using the 

method of ordinary least square 

i.e  Xt = ao+ bot 

After the trend is obtained, the 

series is detrended and the 

seasonal component is estimated 

thus: 

                     DT = 
  

  
 = (St + 1) 

And the seasonal component is  
                             

The model for seasonality is 

                          
   .. . . . . . (1) 
                                                        

i.e. k = 
  

 
 = 6 

ω = 
        

 
 = 

         

   
 = 

 

 
 

Substituting the above in equation 1, gives 

St =        
   

 
      

   

 
 

 

   
.  . . . . .           (2) 

The above equation is cast as a 

multiple linear regression to obtain 

the estimates of ai and bi. Finally, 

we obtained the residuals 

                  Et =Xt -   t 

This is tested for randomness by 

checking the autocorrelation 

function to see if there are 

significant autocorrelations. 
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For the SARIMA methodology, the 

analysis starts with a time plot. 

The plot is examined for any of the 

traditional components such as 

trend, seasonality etc. The 

presence trend and/or seasonality 

signify non-stationarity. Where 

there is seasonality, a seasonal 

differencing is first carried out. If 

the series is still not stationary, 

then a regular differencing is 

needed. An augmented Dickey-

Fuller test can be used to test for 

stationarity. In order to identify a 

suitable model, a look at the graph 

of the seasonally-differenced 

autocorrelation function (ACF) is 

necessary. A significant spike at 

the seasonal lag gives a clue of the 

model. If the spike is positive, it 

suggests a seasonal autoregressive 

model and if it is negative, it is a 

seasonal moving average model. 

In addition, a spike in the early 

lags of the ACF and PACF is 

indicative of the MA and AR 

components respectively. The cut-

off point on the correlogram gives 

the order. All this can be done 

using the statistical software, E-

views. It applies the least squares 

approach to estimation. A 

SARIMA (p, d, q) × (P, D, Q)s 

model is a seasonal Autoregressive 

Integrated Moving Average Model 

with non-seasonal AR and MA 

components of orders p and q 

respectively. The number of 

regular differencing required is d. 

In addition, there are seasonal AR 

and MA components of orders P 

and Q respectively. D is the 

number of seasonal differencing 

carried out and s is the span of 

seasonality. Often the value of d 

and D does not exceed 1. 

 

After fitting a model, it must be 

subjected to residual analysis to 

ascertain that the residuals are 

uncorrelated. If the residuals are 

correlated, a better model has to be 

used. 

 

RESULTS AND DISCUSSION 

A look at the time plot of the 

original data shows seasonality. 

Since the data is monthly, the span 

of seasonality is 12. From the trend 

analysis,  

 ao =210.4116 

 bo = -0.059 

The MS-excel output is given 

below 
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Table 1: Results for the linear trend analysis 

  Coefficient

s 

Standar

d Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercep

t 

210.4116 29.1040

6 

7.22963

1 

5.22E-

11 

152.777

6 

268.045

6 

152.777

6 

268.045

6 

X 

Variable 

1 

-0.05974 0.41747

3 

-0.14309 0.88646

1 

-0.88645 0.76697

2 

-0.88645 0.76697

2 

From the above, bo is clearly not significant. Hence Tt = 210.4116 

 

The seasonal component is 

modeled using equation (2) above. 

The multiple regression was also 

done using excel and the output is 

given in table 4.2 

Table 4.2: Result for testing the 

significance of the detrended series 

 

 
From the above, the equation for 

the seasonal component is given 

as; 

St = -0,9828cosωt – 0.21788sinωt – 

0.15307cos2ωt + 0.099269sin2ωt 

+0.096637cos3ωt + 0.005813sin3ωt + 

0.194711cos4ωt – 0.13081cos5ωt – 

0.02645sin5ωt + 0.029093cos6ωt 

The fitted values obtained using 

this procedure is given in 

appendix 2. The auto correlogram 

of the residuals show that they are 

uncorrelated. 

For comparative purposes with the 

SARIMA approach, the following 

statistics were calculated: 

MAE =  
       

 

 
    = 5.347117 
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MAPE = 100 


^

1i

      iŷ  

  
 = 

5922.968 

MSD = 
 

 
      

     )2 = 84.83943 

 

The time plot of the original series 

shows an upward movement from 

the third month which peaks 

usually at the eighth month and 

then a downward movement of 

the values follow. This is indicative 

of seasonality. Since this occurs 

every 12 months, it is seasonality 

of span 12. As a result, a seasonal 

differencing of span 12 was carried 

out. The time plot of the seasonally 

differenced series suggests 

stationarity. An ADF test proves 

that the seasonally differenced 

series is stationary.   

 

Thus there is no need for regular 

differencing any longer. The 

correlogram of SDUYOR shows a 

negative spike at lag 12 which is 

indicative of a seasonal MA of 

order 1. No other component is 

visible and thus the model is 

SARIMA (0,0,0)×(0,1,1)12. The 

equation for this model is given by  

Yt = Yt-12 + Θ1et-12 + et 

 

Using MINITAB, the output after 

applying this model is shown in 

the table below. 

 

Table 4.3: Final Estimates of Parameters 
Type Coef   SECoef           T           P 

SMA 12   0.8864    0.0682         12.99    0.000 

Differencing: 0 regular, 1 seasonal 

of order 12 

Number of observations:  Original 

series 120, after differencing 108 

Residuals: SS = 8971.29 

(backforecasts excluded) 

                           MS = 83.84 

                           DF = 107 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 
Lag 12 24      36    48 

Chi-Square     8.5    17.4    30.3    37.8 

DF   11      23 35      47 

P-Value      0.665   0.790   0.696   0.829 

 

Substituting the value for the 

seasonal MA component, the 

equation becomes 

 t = Yt-12 + 0.8864et-12 + et 
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The fitted values are given in 

appendix 3 and the model is seen 

to closely agree with the data. The 

correlogram of the residuals shows 

that they are uncorrelated. 

Also, for comparative purpose, 

MAE = 4.74241 

MAPE = 4016 

MSD = 83.0675  

 

CONCLUSION 

It can be inferred from the above 

that the Pseudo-additive Fourier 

series model and the SARIMA 

model are quite suitable for the 

rainfall data. As such, they can be 

used to model and forecast a 

seasonal time series. In addition, 

comparing the MAPE, MAE and 

MSD obtained from the output 

from both models, it can be seen 

that the SARIMA model 

outperforms the Pseudo-additive 

model. 
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