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ABSTRACT

Accurate rainfall forecasting is very important to the economic development of a
country. It is not just important to the government but also to individuals, farmers
and private companies. This paper focuses on comparing the performances of two
approaches to seasonal time series analysis. These approaches are the pseudo-
additive mixed Fourier series approach and the SARIMA approach. The pseudo-
additive Fourier series approach decomposes a time series into the traditional
components in a mixed model. This is suitable for a time series with very small or
zero values like that in the data used, while the ARIMA model has significant
advantages especially in short run forecasting saz [2011], The time series analysis
methods were used to model the monthly rainfall of Uyo in Akwa Ibom state,
Nigeria . The data were monthly value for ten[10] years .A comprehensive outline of
both analysis methods are presented in this paper as well as the advantages each
have after the other . The performances were evaluated based on three[3] statistics;
mean absolute error [MAE], mean absolute percentage error[MAPE] and mean
squared deviation [MSD], The result at the end showed that the SARIMA model has
a smaller MAE, MAPE and MSD values .As such, it is the better model.

INTRODUCTION

Rainfall is a very important feature
of our climate and its importance
(economically and  otherwise)
cannot be overemphasized. For an
economy like ours  where
diversification into Agriculture is
being encouraged, rainfall is a very
important element which cannot
be overlooked. Other sectors
which are also vulnerable to
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weather variability include

tourism, mining, construction etc.

One of the characteristics of
rainfall in Nigeria is seasonality.
The rainy season is experienced
from March till October, with peak
rainfall in August. The dry season
follows from late October till early
March. Sometimes due to too
much rainfall, soil moisture
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reaches saturation levels and the
soil is no longer able to absorb
more rainwater. This leads to over
flooding which coincides with the
peak of the rainy season. In 2012,
there was flooding in Nigeria.
According to a report on
Punchng.com (2015), the total
value of damaged physical and
durable assets caused by floods in
the most affected states was
estimated to have reached
#1.45trillion. There is also the issue
of drought. It is on record that the
1972/73 drought drastically
reduced the contribution of
agriculture to the Gross Domestic
Product in Nigeria from 18.4% in
1971/72 to 7.3% in 1972/73.These
and other issues have made the
forecasting of rainfall to be of great
importance.

Some models have been applied to
various time series on rainfall,
chief of which is the Seasonal
Autoregressive Integrated Moving
Average Model (SARIMA).
However, this paper seeks to
compare the popular SARIMA
approach to a frequency domain
based approach wusing linear
regression and Fourier series
analysis methods. Both approaches
shall be used to model the
available data and the results of
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the estimated values compared
using relevant statistics.

LITERATURE REVIEW
Traditional time series analysis
methods
identification, decomposition and
estimation of the basic
components. Etuk and Uchendu
(2009) listed the basic components
of a time series as the trend,
seasonal ~ component,
component and

involved the

cyclical
irregular
component. In a draft guide to
seasonal adjustment with X-1-
ARIMA, the United States Office of
National Statistics, Time Series
Analysis Branch (2007), discussed
the decomposition models and
outlined them mathematically as;
a. Xt = TS+
(Additive model)
b. Xi=Tx Sex It
(Multiplicative Model)

In practice, most economic time
series exhibit a multiplicative
relationship and hence, the
multiplicative decomposition
usually provides the best fit.
However this  decomposition
approach cannot be implemented
if any zero or negative values
appear in the time series. This is
because it is not possible to divide
a number by zero. This leads to

another decomposition model.
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C. Xt =Tf(Sf+ Ii+ 1)
(Pseudo additive model)

Where,

T= linear trend

St= seasonal component

Ii=irregular component
For a time series that contains very
small or zero values like that
which is used for this work, the
Pseudo-additive model is used. In
this model, both the seasonal and
irregular component are centered
around one. Etuk and Uchendu
(2009) states that the trend can be
calculated using the method of
ordinary least
seasonal component is based on
the work of Joseph Fourier who
introduced the series

squares. The

X =) (a;Cos(w;t)+S,Sin(w;t))
j=0
The equation above seeks to
represent a periodic series as a
sum of sinusoidal components.
Lewis (2003) applied Fourier
Analysis to the forecasting the
inbound call time series of a call
centre. He found out that working
in  the
overcomes  many

domain
difficulties
encountered in the time domain.
Omekara ef al., (2013) modeled the
Nigerian inflation rates using
Fourier series and periodogram
and disclosed that it is better than
the time domain approach because

frequency
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of their simple way of modeling
seasonality and eliminating peaks
without re-estimating the model.

Using the SARIMA methodology,
a Time series with span of
seasonality s, is said to follow a
multiplicative (p, d, q) X (P, D, Q)s
seasonal ARIMA model if
A(L)D(Ls)VVs*X= B(L)O(L%e:
A(L) and B(L) refers to the non-
seasonal AR component and MA
components respectively. @(Ls)
and O(LY are the respective
seasonal AR and MA component.
et is the error term and V¢ and V¢
are the regular and seasonal
differencing respectively required
to make the Time series stationary.
A time series is said to be
stationary if it has a constant
mean, a constant variance and an
autocorrelation that is a function of
the lag separating the correlated
values (Etuk, 2013). Most real-life
Time series are non-stationary.
And since stationarity is a
requirement for wusing this
approach, Box and Jenkins
proposed that such a series could
be made stationary by differencing
with an appropriate order.
A very useful operator is the
backward linear operator (B) or lag
operator defined by:

BX:i= X1

B?X: =BBX:=BXt1=Xt2
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B3Xt =BB?X:=BX:2= Xt3

B*X: = Xtk
Since the mean is constant
throughout the series,

Bu=u

In order to make a non-stationary
series to become stationary, we
apply the difference operator (V),
which is defined by
V=1-B

= VXt=(1-B)X= X X1

V2X:= (1-B)*X+= (1-2B+B)X:

=Xt —2Xe1+ X2
The stationary series W: obtained
as the dth difference (V9) of X: is
given by

Wi =FX: = (1-B)*X:
For a seasonal Time series, a
seasonal differencing is first
carried out and then a regular
differencing, if still required.

METHODOLOGY
St = Y .(a; cos wit + b; sin wit)..

Where, k = number of observation per season divided by 2

. 12
1.e.k=7=6
_2XWmXf 2XmX10 _mw
n 120 6

The data for this work are monthly
rainfall data for the city of Uyo in
Nigeria for ten (10) years. This
data was wused in a research
published in the Asian Journal of
Mathematics and Statistics (ISSN
1994-5418).

Using the frequency domain
approach first, recall that the
model is given by

Xe=T«(S:+ 1)
The trend is obtained by using the
method of ordinary least square
ie Xt = aot bot
After the trend is obtained, the
series is detrended and the
seasonal component is estimated
thus:

DT=22=(Si+1)
And the seasonal component is
St = DT -1

The model for seasonality is

(1)

Substituting the above in equation 1, gives

6 it it
St= (al- cos— + b; sin —)
6 6

i=1
The above equation is cast as a
multiple linear regression to obtain
the estimates of ai and bi. Finally,
we obtained the residuals
Et =Xt - Xt
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(2)
This is tested for randomness by
checking  the
function to see if there are
significant autocorrelations.

autocorrelation
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For the SARIMA methodology, the
analysis starts with a time plot.
The plot is examined for any of the
traditional components such as
trend, seasonality etc. The
presence trend and/or seasonality
signify non-stationarity. Where
there is seasonality, a seasonal
differencing is first carried out. If
the series is still not stationary,
then a regular differencing is
needed. An augmented Dickey-
Fuller test can be used to test for
stationarity. In order to identify a
suitable model, a look at the graph
of the seasonally-differenced
autocorrelation function (ACF) is
necessary. A significant spike at
the seasonal lag gives a clue of the
model. If the spike is positive, it
suggests a seasonal autoregressive
model and if it is negative, it is a
seasonal moving average model.
In addition, a spike in the early
lags of the ACF and PACF is
indicative of the MA and AR
components respectively. The cut-
off point on the correlogram gives
the order. All this can be done
using the statistical software, E-
views. It applies the least squares

approach  to  estimation. A
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SARIMA (p, d, q) x (P, D, Q)s
model is a seasonal Autoregressive
Integrated Moving Average Model
with non-seasonal AR and MA
components of orders p and q
respectively. The number of
regular differencing required is d.
In addition, there are seasonal AR
and MA components of orders P
and Q respectively. D is the
number of seasonal differencing
carried out and s is the span of
seasonality. Often the value of d
and D does not exceed 1.

After fitting a model, it must be
subjected to residual analysis to
ascertain that the residuals are
uncorrelated. If the residuals are
correlated, a better model has to be
used.

RESULTS AND DISCUSSION

A look at the time plot of the
original data shows seasonality.
Since the data is monthly, the span
of seasonality is 12. From the trend

analysis,
a.=210.4116
bo =-0.059

The MS-excel output is given
below
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Table 1: Results for the linear trend analysis

Coefficient | Standar |t Stat

) d Error
Intercep | 210.4116 29.1040 |7.22963
t 6 1
X -0.05974 0.41747 | -0.14309
Variable 3
1

P-value

5.22E-

0.88646

Lower Upper Lower Upper
95% 95% 95.0% 95.0%
152.777 | 268.045 |152.777 |268.045
6 6 6 6
-0.88645 | 0.76697 |-0.88645 | 0.76697

2 2

From the above, b is clearly not significant. Hence Tt =210.4116

The
modeled using equation (2) above.
The multiple regression was also

seasonal component is

done using excel and the output is
given in table 4.2

Table 4.2: Result for testing the
significance of the detrended series

ANOVA
df 58 MS F ignificance F

Regression 12 66.8268 5.569732 2657.706 1.7E-126
Residual 108 0.226335 0.002096
Total 120 67.06313

Coefficlentsandard Erre  t Stat P.value Lower 95% Upper 95% ower 95.0% /pper 95,.0%
Intercept o HN/A #N/A #N/A #N/A #N/A HN/A #N/A
X Variable -0.9828 0,00591 -166.293 5,5E-132 -0,99452 -0,97109 -0,99452 -0.97109
X Varlable -0,21788 0.005912 -36.8479 5.47E-G3 -0,2296 -0,20616 -0.2296  -0,20616
X Variable | -0.15307 0.005924 -25.8375 4.8E-48 -0.16481 -0.14133 -0.16481 -0.14133
X Variable . 0.099269 0.00595 16.68319 1.16E-31 0.087475 0.111063 0,087475 0.111063
X Variable ! 0.096637 0,00591 16.35135 5.5E-31 0.084922 0.108351 0.084922 0.108351
X Variable: 0.005813 0.005937 0.979088 0.329725 0.00596 0.017581 0.00596 0.017581
X Variable ' 0.194711 0.005926 32.85866 4.74E-58 0.182965 0.206456 0.182965 0.206456
X Variable: 0.015869 0.005914 2.683469 0.008433 0.004147 0.02759 0.004147 0.02759
X Variable ! 0.12081 0.005918 22.1029 7.03E-42 0.14254 0.11908 0.14254 0.11908
X Variable 0.02645 0.005922 -4.46704 1.96E-05 0.02819 0.01471 0.03819 0.01471
X Variable 0,025%093 0,004851 5,997716 2, 7E-08 0019478 0,038708 0,019478 0.,038708
X Varlable -3.6E+11 3,09E+11 -1,17919 0,240912 -9.8E+11  2.48E+11 -9.8E+11 2.48E+11

From the above, the equation for
the seasonal component is given
as;

St = -0,9828coswt — 0.21788sinwt —
0.15307cos2wt  + 0.099269sin2wt
+0.096637cos3wt + 0.005813sin3wt +
0.194711cos4wt — 0.13081cosSwt —
0.02645sin5wt + 0.029093cos6wt
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The fitted values obtained using
this procedure is given in
appendix 2. The auto correlogram
of the residuals show that they are
uncorrelated.

For comparative purposes with the
SARIMA approach, the following
statistics were calculated:

MAE = S, 20 = 5.347117
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N yi- Y,/

100 > —; =

i=1

MAPE =

5922.968
MSD =2 3" (Yi — Yi)? = 84.83943
n

The time plot of the original series
shows an upward movement from
the third month which peaks
usually at the eighth month and
then a downward movement of
the values follow. This is indicative
of seasonality. Since this occurs
every 12 months, it is seasonality
of span 12. As a result, a seasonal
differencing of span 12 was carried
out. The time plot of the seasonally
differenced suggests
stationarity. An ADF test proves

series

Table 4.3: Final Estimates of Parameters

Volume 2, Number 3, September 2017

that the seasonally differenced
series is stationary.

Thus there is no need for regular
differencing longer. The
correlogram of SDUYOR shows a

any

negative spike at lag 12 which is
indicative of a seasonal MA of
order 1. No other component is
visible and thus the model is
SARIMA  (0,0,0)x(0,1,1)12.  The
equation for this model is given by
Yi= Y+ Orer2+ e

Using MINITAB, the output after
applying this model is shown in
the table below.

Coef SECoef

Type

T

P

SMA 12 | 0.8864 0.0682

12.99

0.000

Differencing: 0 regular, 1 seasonal
of order 12

Residuals: SS =
(backforecasts excluded)

8971.29

Number of observations: Original MS = 83.84
series 120, after differencing 108 DF =107
Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48

Chi-Square 8.5 17.4 30.3 37.8

DF 11 23 35 47

P-Value 0.665 0.790 0.696 0.829

Substituting the value for the
MA component, the
equation becomes

seasonal
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Yi=Yi2 + 0.8864er12+ er
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The fitted values are given in
appendix 3 and the model is seen
to closely agree with the data. The
correlogram of the residuals shows
that they are uncorrelated.

Also, for comparative purpose,
MAE = 4.74241

MAPE = 4016

MSD = 83.0675

CONCLUSION

It can be inferred from the above
that the Pseudo-additive Fourier
series model and the SARIMA
model are quite suitable for the
rainfall data. As such, they can be
used to model and forecast a
seasonal time series. In addition,
comparing the MAPE, MAE and
MSD obtained from the output
from both models, it can be seen
that the SARIMA model
outperforms the Pseudo-additive
model.
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S/No Y
162
256
32004
429
5273
6 450
7371
8 396
9 320.5

10 88.1
11 108
12 14

S/No Y

9.131
55.15
224 8
2985
2774
4381
368.2
3956
3288
10 95456
11  15.77
12 1163

W oo W=
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SNo Y
13 45
14 605
15 221
16 299
7 M
18 439
19 372
20 400
21 331
22 9.1
23 15
24 10
S/No Y
13 929
14 553
15 224
16 300
17 278
18 439
19 368
20 400
21 330
22 952
23 157
24 117

SNoY

25
26

27

28
29
30
31

o
32

33
34
35
36

-
-

35
219
300
280
438
32
397
323
§74
14
99

S/No ¥

25
26
27
28
29
30
31
32
33

35
36

9.18
548
224
300
277

368

331

94.2
i55
119

SNo Y

37
38
39
40
41
42
43
44
45
46
47
48

APPENDIX 2.
ESTIMATIS USING FOURIIR SIRITS AMPROACH

0
45
222
297
277
440
372
397
328
88
12
10

S/No Y

37
38
39
40
41
42
43
44
45
46
47
48

9.07
56
223
300
276
4338
368
401
330
95.4
16.5
12

APPENDIN 12
ACTUAL VaLLTS

SNeY

49
50
51
52
33
34
35
36
57
38
39
60

88
509
224
310
268
40
382
396
325
100
13
35

S/NoY

49
50
51
52
53
54
55
56
57
58
59
60

7.88
55.1
224
295
277
440
369
400
329
94.5
153
13.2

SNe Y

61
62
63
64
65
66
67
68
69
70
1
72

29
538
225
296
273
400
372
395
324
88
9
112

S/No Y

61
62
63
64
65
66
67
68
69
70
1
72

8.84
56.3
225
300
276
437
367
399
330
95.7
184
12.2

SNo Y
73 353
74 55
75 225
76 299
77 273
78 433
9 372
80 401
81 328
82 926
83 10
84 358
S/No Y
73 55
74 553
75 224
76 301
77 277
78 442
79 368
80 400
81 328
82 968
83 173
84 112

SNoY

85
86
87
88
89

91

-~
-

93
94
95
96

5.7

L7

- !

222
207
272
436
300
389
323
90.3
116
125

S/No Y

85
86
87

S1
92
93
94
95
96

862
56.5
223
302
278
439
367
401
327
93.7
16.1
124

SNe

97

98

99

100
101
102
103
104
105
106
107
108

Y
48
45
230
287
277
22
356
389
333
92
12

10

S/NoY

97

100
101
102
103
104
105
106
107
108

74

226
299
277
441
366
398
330
S5

15

14

SNo
109
110
111
112
113
114
115
116
117
118
119
120

$/No
109
110
111
112
113
114
115
116
117
118
119
120

Y
2
42
217
290
268
442
3N
403
321
87
13
1.1

6.2
S5
225
301
276
442
369

329
96
14
15
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$/No ¥
|

WO OO ~J O WU s o Mo

bt b P
o - O
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§/No Y
13 5.05
14 514
15 220

16 293
17 215
18 441
19 364
20 3%4
A 3277

2 908
23 122
24 104

§/No ¥

25 499
26 524

27
28
25
30
31
32
3

220
2%
274
40
365
39
328

34 907
3 125
36 104

§/No Y
37 5.13
38 527
39 20
40 29
41 275
42 &40
43 366
44 395
4 327
46 904
47 127
48 103

APPENDIX:
ISTIMATES USING THE SARDMA METEODOLOGY

$/NoY

45 455
50 518

51
52
53
54
55
56
57

220
29
275
0
366
39
327

58 90.1
59 126
60 103

S/No ¥

61 5.03
62 517

63
b4
65
66
67
68
65

21
297
274
240
368
395
32

70 912
1 129

2 951

§/No ¥
73 479
%52
52

6 297
7 24
18 435
19 369
80 395
81 377
82 903
83 125
8 97

SNoY  S/NoY

85 485 97 49
86 523 98 53
8 2 9 W

88 297 100 297
89 274 101 274
90 435 102 435
91 369 103 361

92 396 104 395
93 327 105 326

94 911 106 91
95 122 107 12

96 9.26 108 956

§/No ¥
109 49
110 52
111 223

112 29
113 274
114 436
115 361
116 3%4
117 327

118 9
119 12

120 97
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