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ABSTRACT 

This paper reviews different process scheduling criteria; algorithms; properties; objectives and 

underlying dynamic data structures that optimize process scheduling such as concurrent priority 

queues (PQs). PQs are known for handling multi-dimensional processes in central processing 

units (CPUs) by using tasked-based PQs such as - SkipQueue, a highly distributed PQ-based 

on a simple modification of Pugh’s concurrent SkipList algorithm. SkipLists – search structures 

based on hierarchically ordered linked-lists. PQs are fundamental in the design of modern 

multiprocessor algorithms, with many applications ranging from numerical algorithms through 

discrete event simulation and expert systems design and implementation. For such algorithms to 

be used in the CPU they must possess certain inherent properties such as: fairness; 

predictability; throughput maximization and enforcement of priorities respectively. Scheduling 

priority criteria such as – CPU utilization, throughput; turnaround; waiting and response times 

are also critical for such systems. Several attempts have been made to address the design of 

concurrent priority queue algorithms for multi-dimensional processes and small scale machines. 

Nevertheless, the problem of obtaining optimality in performance is yet to be resolved. This work 

attempts to address the problem. Results and findings from our algorithm simulation on 

MATLAB environment indicate that to search a list of N items, O (logN) level lists are 

traversed, and a constant number of items is traversed per level, making the expected overall 

complexity of an Insert or Delete operation on a PQ O(logN). This indicates an improvement in 

performance threshold, as other algorithms exhibited O (N) complexity for similar search times. 

Keywords: multiprocessors, concurrent data structures, priority queues. 

 

INTRODUCTION 

The most central concept in any 

operating system is the process – an 

abstraction of a running program [1]. 

They support concurrency, even 

though there is only one CPU 

available, turn a single CPU into 

multiple virtual CPUs et cetera. 

Modern computers perform several 

tasks at the same time. A process 

can exist in three states viz: running, 

ready and blocked [1] as shown in 

figure 1. A process is in running 

mode when it is actually using the 

CPU; ready when it is runnable, but 

temporarily stopped to let another 

process run; blocked when unable to 

run until some external event happen 

respectively [1]. The process model 

illustrated below is implemented as 

process tables or process control 

blocks (PCBs), with one entry per 

process in the operating system 

(OS). 
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Figure 1: Process state transition diagram [1] 

 

For instance in a Web server, 

Requests for web pages comes in 

from diverse sources. When a request 

is received, the server checks to see if 

the page needed is in the cache. If it 

is, it is sent back to the requesting 

computer, if it is not, a disk request 

is initiated to fetch it. However, 

form CPU perspective this takes a 

long time. While waiting for the disk 

request to complete, many more 

requests may come in. If there are 

multiple disks present, some or all of 

them may be triggered off to other 

disks long before the first request is 

satisfied [1]. In another scenario, 

consider a personal computer (PC) 

user. When the system is booted, 

many processes are started in the 

background, often unknown to the 

user. For instance, a process may be 

started up to wait for incoming e-

mails. Another process may run on 

behalf of the anti-virus program to 

check periodically if any new virus 

definitions are available. In addition, 

explicit user processes may be 

running, printing files and burning a 

CD-ROM, all while the user is 

surfing the web [1]. All this activity 

has to be managed, and a multi-

programming system supporting 

multiple processes finds a better 

application in this instances. From 

the foregoing scenario, it is 

imperative for a system to be 

designed to model and control this 

concurrency. This is where 

scheduling algorithms such as task-

based priority queues data 

structures, processes (and especially 

threads) can help. In other to address 

the problem of designing robust and 

scalable concurrent priority queues 
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for handling multi-dimensional 

processes in central processing unit 

(CPU) using tasked-based priority 

queues, this paper adopts an 

alternative approach: base the design 

of concurrent priority queues on the 

SkipQueue data structures of Pugh 

[2], [3], rather than on the popular 

Heap data structures found 

throughout the literature [4], [5], [6], 

[7], [8], [9], [10], [11], [12], [13], [14], 

[15], [16], [17]. The rest of the work is 

organised as follows: section 2 deals 

with background of study, section 3 

reviews of related works, section 4 

methodology, section 5 results, 

section 6 discussion of results and 

section 7 conclusion of the paper. 

Though there is a wide body of 

literature addressing the design of 

concurrent priority queue algorithms 

for multi-dimensional processes and 

small scale machines, the problem of 

obtaining optimality in performance 

is yet to be addressed. 

 

BACKGROUND 

Priority queues are of fundamental 

importance in the design of modern 

multiprocessor algorithms. They 

have many classical applications 

ranging from numerical algorithms, 

through discrete event simulation, 

and expert system design. A priority 

queue is an abstract data type that 

allows n asynchronous processes to 

each perform one of two operations: 

an Insert of an item with a given 

priority, and a Delete-min operation 

that returns the item of highest 

priority in the queue. We are 

interested in “general" queues, ones 

that have an unlimited range of 

priorities, where between any two 

priority values there may be an 

unbounded number of other 

priorities. Such queues are found in 

numerical algorithms and expert 

systems [18], [19] and differ from the 

bounded priority queues used in 

operating systems, where the small 

set of possible priorities is known in 

advance. How does one go about 

constructing a concurrent priority 

queue allowing arbitrary priorities? 

Since for most reasonable size 

queues, logarithmic search time 

easily dominates linear one, the 

literature on concurrent priority 

queues consists mostly of algorithms 

based on two paradigms: search trees 

[20], [21] and heaps [4], [5],  [6], [7], 

[8], [9], [10], [11], [12], [13], [14], [15], 

[16], [17]. Empirical evidence 

collected in recent years [10; 17; 39] 

shows that heap-based structures 

tend to outperform search tree 

structures. This is probably due to a 

collection of factors, among them 

that heaps do not need to be locked 

in order to be “rebalanced," and that 

Insert operations on a heap can 

proceed from bottom to root, thus 

minimizing contention along their 

concurrent traversal paths. 

 

When there are several processes in 

the ready queue as shown in figure 2, 

the algorithm which decides the 

order of execution of those processes 

is called a scheduler and the 

underlying algorithm that controls it 

is known as a scheduling algorithm 

as shown In figure 1. Among the 
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various well known CPU scheduling 

algorithms are: First Come First 

Serve (FCFS), Shortest Job First 

(SJF), Round Robin (RR), and 

Priority Scheduling (PS). Scheduling 

algorithm aide in actualizing the 

goals of maximum utilization of the 

CPU. The scheduling algorithm 

decides the mode and nature of the 

execution process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Processor and I/O scheduling 

 

Job scheduling is one of the vital 

roles the CPU performs in attending 

to the task of processing data for 

easy accessibility by the client [22]. 

The aim of the scheduling algorithm 

is to ensure that jobs or processes are 

attended to at the appropriate time 

by sharing execution time among all 

processes [22]. The First Come First-

Serve (FCFS) scheduling algorithm 

is the simplest CPU non pre-

emptive (cooperative) scheduling 

algorithm. It is fair in the formal 

sense of fairness but it is unfair in 

the sense that long jobs make short 

jobs and unimportant jobs wait 

endlessly. It assigns priority to the 

processes in the order they request 

the processor (first-in-first-out). 

Processes are dispatched according 

to their arrival time on the ready 

queue [23]. For instance, consider a 

hypothetical scenario with three (3) 

processes shown in table 1. 

 

Table 1: Process model for FCFS scheduling algorithm 

Process Burst Time Arrival 

P1 24 0 

P2 3 0 

P3 3 0 
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Using a Gantt chart in the order: P1, P2, P3 it can be shown that the average 

waiting time and turnaround time for the three processes: P1, P2, and P3 are: 17s 

and 27s respectively.  

 

 P1              P2           P3 

                   0        24                   27                     30 

 

Figure 3: Gantt chart for processes P1, P2 and P3 

 

Average Waiting Time (AWT): 

P1+P2+P3 = (0+24+27)/3 = 17s 

Average Turnaround Time (ATT): 

P1+P2+P3 (24+27+30)/3 = 27s 

However, if the order of the 

processes is reversed as: P2, P3, P1 

there is a substantial decrease in the 

ATT to 13s. 

 

 P2 P3            P1 

                0                  3                  6                  30 

 

Figure 4: Gantt chart to illustrate FCFS scheduling algorithm 

Average Turnaround Time (ATT): P2+P3+P1 (3+6+30)/3 = 13s 

 

Similarly, the shortest-job-first (SJF) 

process scheduling algorithm, also 

referred to as shortest-process-next 

(SPN) is a non pre-emptive scheme 

in which the CPU is assigned to the 

process with smallest CPU burst. If 

the CPU bursts of two processes are 

the same, FCFS scheduling is used 

to resolve the queues. When a job 

comes in, insertion is done on the 

ready queue based on its length and 

its gives the minimum average 

waiting time and minimum average 

turnaround time for a given set of 

processes [24]. A pre-emptive SJF 

algorithm will pre-empt the currently 

executing process, whereas a non 

pre-emptive SJF algorithm will not 

pre-empt the currently running 

process to finish its CPU burst [23], 

[25]. The SJF algorithm favours jobs 

(or processes) with shorter execution 

time at the expense of processes with 

longer ones. Among the major 

problems with SJF is that it requires 

precise understanding of how long a 

job or process will run, and this 

information is not readily available. 

A typical scenario is shown below in 

table 2. 

 

Table 2: Process model for SJF scheduling algorithm 

Process Burst Time Arrival 

P1 6 0 

P2 8 0 

P3 7 0 

P4 3 0 
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Using a Gantt chart in the order: P1, P2, P3, P4 it can be shown that the AWT 

for the four processes: P1, P2, P3 and P4 is 7s with SJF of 10.25s respectively.  

 

                  P4              P1           P3         P2 

            0                 3                  9                     16                 24 

 

 

Figure 5: Gantt chart for processes P1, P2, P3 and P4 

 

Average Waiting Time (AWT): 

P1+P2+P3+P4 = (0+3+16+9)/3 = 

7s. In another type of priority 

scheduling known as Round Robin 

(RR) Scheduling processes are 

dispatched based on first-in-first-out 

(FIFO) order. It is essentially the 

pre-emptive version of FIFO. But 

the proviso is that they are given the 

CPU only for a limited amount of 

time called a time-slice or quantum. 

This approach is designed for time- 

sharing systems. In each time slice 

(quantum) the CPU executes the 

current process only up to the end of 

the time slice. The CPU scheduler 

goes round the ready queue as shown 

in figure 5, allocating the CPU to 

each process for a time interval. If a 

process does not complete before its 

CPU-time expires, the CPU is pre-

empted and given to the next process 

waiting in a queue. The pre-empted 

process is then placed at the back of 

the ready list [23], [24] and [26]. 

                                  

  Ready Queue                                Completion 

 

 

                                       Pre-emption 

 

           

 

 
 

Figure 6: Illustrating Round Robin scheduling algorithm 

 

For instance, consider a hypothetical scenario with three (3) processes shown in 

table 1. 

Table 3: Process model for FCFS scheduling algorithm 

Process Burst Time Arrival 

P1 24 0 

P2 3 0 

P3 3 0 

 

Using a Gantt chart in the order: P1, 

P2, P3… it can be shown that the 

average waiting time and turnaround 

time for the three processes: P1, P2, 

C B A CPU A 
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and P3 are: 5.66s and 17s 

respectively.  

 

                 

P1            P2             P3            P1                  . . .             P1 

     0                 4              7               10             14                    26            30 

 

Figure 7: Gantt chart for processes P1, P2 and P3 for RR scheduling algorithm 

 

Average Waiting Time (AWT): (0+4+7+(10-4))/3 = 5.66s 

With FCFS: (0+24+27)/3 = 17s 

 

RELATED WORKS 

There is a wide body of literature 

addressing the design of concurrent 

priority queue algorithms for multi-

dimensional processes and small 

scale machines. In this section an 

overview is provided to analyze the 

different scheduling mechanisms 

which have been used for predictable 

allocation of CPU so as to track 

different research trends and 

improvements made in this research 

area so far. In one of this attempts, 

[25] in Performance Assessment of 

some CPU scheduling Algorithms, 

compared different scheduling 

algorithms on the basis of waiting 

time and turnaround time. This 

paper proceeded to give a brief 

overview and deals with the problem 

of deciding which of the processes in 

the ready queue is to be allocated the 

CPU. They evaluated the “short 

Remaining Time First scheduling 

algorithm. In this scheduling 

algorithm the ready queue is 

organized according to the burst 

times of the processes. The routines 

which require small amount of time 

to execute are placed in front of the 

queue. This algorithm is also a pre-

emptive scheduling algorithm. The 

process with smallest burst time is 

selected and assigned to CPU. If a 

process with lower burst time as 

compared to process which is 

running comes in the queue, then the 

process which is running is pre-

empted and the new process with 

small burst time starts its execution 

then the process is terminated and 

removed from the waiting process 

list. In other to ensure CPU 

fairness, [26] proposed an algorithm 

that allocates the CPU to every 

process in Round Robin (RR) 

fashion for an initial time quantum 

(say n units). After completing first 

cycle, it doubles the initial time 

quantum (2n units) and allocates the 

CPU to the processes in SJF format.  

 

In other to resolve the CPU 

scheduling conundrum [27] in “CPU 

scheduling: A comparative study”, 

discuss about scheduling policies of 

CPU for computer systems. A 

number of problems were solved to 

find the appropriate among them. 

Therefore, based on performance, the 

shortest job first (SJF) algorithm is 

suggested for the CPU scheduling 

problems to decrease either the 

average waiting time or average 



 

A.H. Eneh,  A. J.  Jimoh & U. C. Arinze | 114  

 

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using  

Task-Based Priority Queues Data Structures 

 
turnaround time. Similarly, the first-

come-first-serve (FCFS) algorithm is 

suggested for the CPU scheduling 

problems to reduce either the average 

CPU utilization or average 

throughput. In [28], they proposed an 

algorithm that allocates the CPU to 

processes in RR fashion. After 

executing each process for one time 

quantum, it checks the remaining 

burst time of the currently running 

process for the remaining burst time, 

else it moves the process to the tail 

of the ready queue. In [29], they made 

an improvement to the Longest Job 

First (LJF) CPU scheduling 

algorithm. It works by sorting the 

process in descending order of their 

CPU burst times and then it 

determines a threshold known as 

combined Weighted Average 

(CWA) which is the average of the 

processes. This is used to categorize 

the processes into long and short 

processes.  

Furthermore, [24] proposed an 

algorithm that focuses on an 

additional improvement Round 

Robin (AAIRR) CPU scheduling. 

The algorithm reduces the no of 

context switch, waiting time and 

turnaround time drastically 

compared to the improved Round 

Robin (IRR) scheduling algorithm 

and simple Round Robin scheduling 

algorithm. 

 

 METHODOLOGY 

An analytical approach using a 

combination of asymptotic algorithm 

analysis; 2-D plots rendering and 

graphs on MATHLAB and SPSS 

platforms will be adopted in this 

approach. The rationale for the 

approach is informed by their 

accurate, systematic and methodical 

manner of rendering results with 

visualization effects, which makes 

its easy for deductions to be made 

easily. In this paper we propose 

concurrent priority queues based on 

the highly distributed Skip List and 

Skip Queue data structures of Pugh 

[2]. Skip Lists are search data 

structures based on hierarchically 

ordered linked-lists, with a 

probabilistic guarantee of being 

balanced. The basic idea behind 

SkipLists is to keep elements in an 

ordered list, but have each record in 

the list be part of up to a logarithmic 

number of sub-lists. These sub-lists 

play the same role as the levels of a 

binary search structure, having twice 

the number of items as one goes 

down from one level to the next. To 

search a list of N items, O (logN) 

level lists are traversed, and a 

constant number of items are 

traversed per level, making the 

expected overall complexity of an 

Insert or Delete operation on a Skip 

List O (logN) [3]. Similarly, Skip 

Queue is a highly distributed 

priority queue based on a simple 

modification of Pugh's concurrent 

SkipList algorithm [2]. Inserts in the 

Skip Queue proceed down the levels 

as in [2]. For Delete-min, multiple 

“minimal" elements are to be handed 

out concurrently. This means that 

one must coordinate the requests, 

with minimal contention and 

bottlenecking, even though Delete-
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mins are interleaved with Insert 

operations. The choice of Skip 

Queues data structures over prior 

heap and tree data structures for our 

simulation is informed by a number 

of factors such as:  distributed 

locking; probabilistic balancing, 

hence there is no need for a major 

synchronized “rebalancing" 

operation; Delete-min operations are 

evenly distributed over the data 

structure, hence minimizing locking 

contention and the avoidance of need 

to pre-allocate all memory, since the 

structure is not placed in an array. 

RESULTS 

Computer simulation run of the 

SkipList and SkipQueue data 

structures using the algorithms and 

pseudo-codes shown in algorithms 1, 

2, and 3 respectively were performed 

on Toshiba PC with Intel Core i5 

64-bit processor architecture, with 

Intel CPU running at 2.50 GHZ, 8 

GB RAM memory on Windows 8.1 

platform. MATLAB software 

version 7.11.0 R2010b was used for 

algorithm performance evaluation 

and simulation so as to test the 

performance and optimality of the 

algorithms. The charts and 2-D plots 

obtained are shown in figures 8 – 12 

respectively. 

 

Algorithm 1: Code for auxiliary procedure getLock  

node_t * getLock(node_t * node1, key_t key, int level) 

{ 

1    node2 = node1->next[level] 

2   while (node2->key < key) { // Look for the node with the largest 

3   node1 = node2 // key smaller than the key we're 

4   node2 = node1->next[level] // searching for. 

5  } 

6    lock(node1, level) // Lock the node. 

7       node2 = node1->next[level] 

8             while (node2->key < key) { // Something changed before locking. 

9                 unlock(node1, level) // Unlock node. 

10           node1 = node2 // Get the next node in the queue. 

11        lock(node1, level) // Lock it. 

12     node2 = node1->next[level] 

13    } 

14   return node1 

       } 

                   int randomLevel() 

{ 

1              int l = 1 

2             while (random() < p) 

3                   l++ 

4                 if (l > queue->maxLevel) 
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5              return queue->maxLevel 

6         else 

7       return l 

       } 

 

Algorithm 2: Code for inserting a node into the queue 

 

int Insert(key_t key, value_t value) 

          { 

1   node1 = queue->Head // Search from the queue head 

2            for (i = queue->max Level; i > 0; i--) { // search all levels. 

3           node2 = node1->next[i] 

4         while (node2->key > key) { // Find the place at this 

5      node1 = node2 // level in which to 

6    node2 = node2->next[i] // Insert the new node. 

7  } 

8        savedNodes[i] = node1 // Save the location that was found. 

9      } 

10  node1 = getLock(node1, key, 1) 

11     node2 = node1->next[i] 

12    if (node2->key == key) { 

13   node2->value = value; 

14   unlock (node1, 1) 

15   return UPDATED 

16   } 

17     level = random Level () // Generate the level of the new node. 

18  new Node = Create Node (level, key, value) 

19     new Node->time Stamp = MAX_TIME; // Initialize the time stamp. 

20    lock(new Node, NODE) // Lock the entire node. 

21  for (i = 1; i <= level; i++) { 

22  if (i != 1) // level 1 is already locked 

23  node1 = getLock(savedNodes[i], key, i) 

24  new Node->next[i] = node1->next[i] // insert the new node 

25  node1->next[i] = new Node // into the queue. 

26  unlock(node1, i) 

27  } 

28  unlock(newNode, NODE) // Release the lock on entire node. 

29  new Node->time Stamp = get Time(); // Set the time stamp. 

30  return INSERTED // The insertion was successful. 

         Algorithm 3: Code for deleting the smallest node from the queue 

int Delete_Min (value_t * value)) 

{ 



 

A.H. Eneh, A. J.  Jimoh & U. C. Arinze | 117  

 

 International Journal of Science and Advanced Innovative Research  

Volume 3, Number 2, June 2018 

 

1   time = get Time (); // Mark the time at which the search starts. 

2  node1 = queue->head->next [1] // Start search at start of first level. 

3  while (node1 != queue->tail) { // Search until end of queue. 

4   if (node1->time Stamp < time) { // Ignore all nodes that were 

// inserted after search began. 

5   marked = SWAP (node1->deleted, TRUE) // Swap the flag value. 

6   if (marked == FALSE) // An unmarked node was found, 

7   break // so end the search. 

8   node1 = node1->next [1] // Move to next node. 

9   } 

10           } 

11        if (node1 != queue->tail) { // We found an unmarked node 

12      *value = node1->value // save its value 

13     key = node1->key // and its key. 11 } 12 else 

14 return EMPTY // No node was found in the queue. 

15  node1 = queue->head // Start the search from the head. 

16  for (i = queue->max Level; i > 0; i--) // Search all levels. 

17  node2 = node1->next[i] 

18  while (node2->key > key) { // Find the place at this 

19  node1 = node2 // level in which the node 

20  node2 = node2->next[i] // with the key is located. 

21  } 22 savedNodes[i] = node1 // Save the location that was found. 

23            } 

24          node2 = node1 

25         while (node2->key != key) // Make sure we have a pointer 

26        node2 = node2->next[1] // to the node with the key. 

27      lock(node2, NODE) // Lock the entire node to be deleted. 

28    for (i = node2->level; i > 0; i--) { 

29  node1 = get Lock(savedNodes[i], key, i) // Lock this level on 

30  lock (node2, i) // the node to be deleted and node before it. 

31 node1->next[i] = node2->next[i] // Remove the node from the 

32  node2->next[i] = node1 // queue. 

33  unlock(node2, i) // Release the locks on this level at 

34      unlock(node1, i) // the deleted node and node before it. 

35    } 

36   unlock(node2, NODE) // Release the lock on entire node. 

37  Put On Garbage List(node2) // Put the node on the garbage list. 

38  return DELETE // Delete was successful. 
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Figure 8: Comparison chart of bursting time for FCFS & SJF algorithms 

 

 

Figure 9: The small structure benchmark 
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Figure 10: The large structure benchmark 

 

Figure 11: SkipQueue vs. Relaxed SkipQueue for small structure 
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Figure 12 Skip Queue vs. Relaxed SkipQueue for large structure 

 

DISCUSSION of RESULTS 

Our implementation is based on the 

SkipList implementation in [31]. The 

code for the auxiliary procedures and 

for the Insert is identical, and our 

changes are in the Delete_Min 

procedure which uses the Delete 

operation for SkipLists provided in 

[31]. We note that for compatibility 

with earlier C-based SkipList 

implementations, the interface of the 

actual implemented code differs 

slightly from the specification of 

Section 4.2. An inserted item in the 

Insert procedure is actually a pair of 

key and value), where comparisons 

are done on the key and the value is 

just the stored item. The Insert 

procedure returns a success code. 

The Delete min operation returns 

the deleted item's value in a 

designated memory location, and 

returns a notification of success or a 

possible EMPTY SkipQueue. 

The Comparison results in figure 8 

shows that process two (P2) with the 

bursting time of eighty-four (84) has 

eight (8) ns timeslot for both First-

come-first-serve and shortest-job-

first CPU scheduling algorithms. In 

this case the processor can choose 

either to attend to any of the process 

or job of shortest job First-come-

first-serve based on their arrival. The 

chart also shows that the 

comparison of process between 

FCFS and SJF which indicates that 

shortest job have comparative 

advantage over First-come-First-

serve. 
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CONCLUSION  

Different scheduling algorithms 

have their merits and demerits. 

However, this research work 

recommended that in solving multi-

dimensional processes both the First-

Come-First-Serve and Shortest Job 

First should be considered to 

enhance effective and efficient 

completion of job tasks. 
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