

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 107

 International Journal of Science and Advanced Innovative Research

ISSN: 2536-7315 (Print) 2536-7323 (Online)

Volume 3, Number 2, June 2018

http://www.casirmediapublishing.com

MODELS FOR HANDLING MULTI-DIMENSIONAL PROCESSES

IN CENTRAL PROCESSING UNIT USING TASK-BASED

PRIORITY QUEUES DATA STRUCTURES

A.H. Eneh*, A. J. Jimoh & U. C. Arinze

Department of Computer Science

Faculty of Physical Sciences

University of Nigeria, Nsukka-South East, Nigeria

Email: agozieh.eneh@unn.edu.ng, jimoh.johnson@unn.edu.ng

*Corresponding author

ABSTRACT

This paper reviews different process scheduling criteria; algorithms; properties; objectives and

underlying dynamic data structures that optimize process scheduling such as concurrent priority

queues (PQs). PQs are known for handling multi-dimensional processes in central processing

units (CPUs) by using tasked-based PQs such as - SkipQueue, a highly distributed PQ-based

on a simple modification of Pugh’s concurrent SkipList algorithm. SkipLists – search structures

based on hierarchically ordered linked-lists. PQs are fundamental in the design of modern

multiprocessor algorithms, with many applications ranging from numerical algorithms through

discrete event simulation and expert systems design and implementation. For such algorithms to

be used in the CPU they must possess certain inherent properties such as: fairness;

predictability; throughput maximization and enforcement of priorities respectively. Scheduling

priority criteria such as – CPU utilization, throughput; turnaround; waiting and response times

are also critical for such systems. Several attempts have been made to address the design of

concurrent priority queue algorithms for multi-dimensional processes and small scale machines.

Nevertheless, the problem of obtaining optimality in performance is yet to be resolved. This work

attempts to address the problem. Results and findings from our algorithm simulation on

MATLAB environment indicate that to search a list of N items, O (logN) level lists are

traversed, and a constant number of items is traversed per level, making the expected overall

complexity of an Insert or Delete operation on a PQ O(logN). This indicates an improvement in

performance threshold, as other algorithms exhibited O (N) complexity for similar search times.

Keywords: multiprocessors, concurrent data structures, priority queues.

INTRODUCTION

The most central concept in any

operating system is the process – an

abstraction of a running program [1].

They support concurrency, even

though there is only one CPU

available, turn a single CPU into

multiple virtual CPUs et cetera.

Modern computers perform several

tasks at the same time. A process

can exist in three states viz: running,

ready and blocked [1] as shown in

figure 1. A process is in running

mode when it is actually using the

CPU; ready when it is runnable, but

temporarily stopped to let another

process run; blocked when unable to

run until some external event happen

respectively [1]. The process model

illustrated below is implemented as

process tables or process control

blocks (PCBs), with one entry per

process in the operating system

(OS).

mailto:agozieh.eneh@unn.edu.ng
mailto:jimoh.johnson@unn.edu.ng

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 108

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using

Task-Based Priority Queues Data Structures

 Admitted

 Exit

 Interrupt

 Scheduler dispatch

 I/O or event completion I/O or event wait

Figure 1: Process state transition diagram [1]

For instance in a Web server,

Requests for web pages comes in

from diverse sources. When a request

is received, the server checks to see if

the page needed is in the cache. If it

is, it is sent back to the requesting

computer, if it is not, a disk request

is initiated to fetch it. However,

form CPU perspective this takes a

long time. While waiting for the disk

request to complete, many more

requests may come in. If there are

multiple disks present, some or all of

them may be triggered off to other

disks long before the first request is

satisfied [1]. In another scenario,

consider a personal computer (PC)

user. When the system is booted,

many processes are started in the

background, often unknown to the

user. For instance, a process may be

started up to wait for incoming e-

mails. Another process may run on

behalf of the anti-virus program to

check periodically if any new virus

definitions are available. In addition,

explicit user processes may be

running, printing files and burning a

CD-ROM, all while the user is

surfing the web [1]. All this activity

has to be managed, and a multi-

programming system supporting

multiple processes finds a better

application in this instances. From

the foregoing scenario, it is

imperative for a system to be

designed to model and control this

concurrency. This is where

scheduling algorithms such as task-

based priority queues data

structures, processes (and especially

threads) can help. In other to address

the problem of designing robust and

scalable concurrent priority queues

New

Terminate

d

Ready Running

Waiting

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 109

 International Journal of Science and Advanced Innovative Research

Volume 3, Number 2, June 2018

for handling multi-dimensional

processes in central processing unit

(CPU) using tasked-based priority

queues, this paper adopts an

alternative approach: base the design

of concurrent priority queues on the

SkipQueue data structures of Pugh

[2], [3], rather than on the popular

Heap data structures found

throughout the literature [4], [5], [6],

[7], [8], [9], [10], [11], [12], [13], [14],

[15], [16], [17]. The rest of the work is

organised as follows: section 2 deals

with background of study, section 3

reviews of related works, section 4

methodology, section 5 results,

section 6 discussion of results and

section 7 conclusion of the paper.

Though there is a wide body of

literature addressing the design of

concurrent priority queue algorithms

for multi-dimensional processes and

small scale machines, the problem of

obtaining optimality in performance

is yet to be addressed.

BACKGROUND

Priority queues are of fundamental

importance in the design of modern

multiprocessor algorithms. They

have many classical applications

ranging from numerical algorithms,

through discrete event simulation,

and expert system design. A priority

queue is an abstract data type that

allows n asynchronous processes to

each perform one of two operations:

an Insert of an item with a given

priority, and a Delete-min operation

that returns the item of highest

priority in the queue. We are

interested in “general" queues, ones

that have an unlimited range of

priorities, where between any two

priority values there may be an

unbounded number of other

priorities. Such queues are found in

numerical algorithms and expert

systems [18], [19] and differ from the

bounded priority queues used in

operating systems, where the small

set of possible priorities is known in

advance. How does one go about

constructing a concurrent priority

queue allowing arbitrary priorities?

Since for most reasonable size

queues, logarithmic search time

easily dominates linear one, the

literature on concurrent priority

queues consists mostly of algorithms

based on two paradigms: search trees

[20], [21] and heaps [4], [5], [6], [7],

[8], [9], [10], [11], [12], [13], [14], [15],

[16], [17]. Empirical evidence

collected in recent years [10; 17; 39]

shows that heap-based structures

tend to outperform search tree

structures. This is probably due to a

collection of factors, among them

that heaps do not need to be locked

in order to be “rebalanced," and that

Insert operations on a heap can

proceed from bottom to root, thus

minimizing contention along their

concurrent traversal paths.

When there are several processes in

the ready queue as shown in figure 2,

the algorithm which decides the

order of execution of those processes

is called a scheduler and the

underlying algorithm that controls it

is known as a scheduling algorithm

as shown In figure 1. Among the

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 110

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using

Task-Based Priority Queues Data Structures

various well known CPU scheduling

algorithms are: First Come First

Serve (FCFS), Shortest Job First

(SJF), Round Robin (RR), and

Priority Scheduling (PS). Scheduling

algorithm aide in actualizing the

goals of maximum utilization of the

CPU. The scheduling algorithm

decides the mode and nature of the

execution process.

Figure 2: Processor and I/O scheduling

Job scheduling is one of the vital

roles the CPU performs in attending

to the task of processing data for

easy accessibility by the client [22].

The aim of the scheduling algorithm

is to ensure that jobs or processes are

attended to at the appropriate time

by sharing execution time among all

processes [22]. The First Come First-

Serve (FCFS) scheduling algorithm

is the simplest CPU non pre-

emptive (cooperative) scheduling

algorithm. It is fair in the formal

sense of fairness but it is unfair in

the sense that long jobs make short

jobs and unimportant jobs wait

endlessly. It assigns priority to the

processes in the order they request

the processor (first-in-first-out).

Processes are dispatched according

to their arrival time on the ready

queue [23]. For instance, consider a

hypothetical scenario with three (3)

processes shown in table 1.

Table 1: Process model for FCFS scheduling algorithm

Process Burst Time Arrival

P1 24 0

P2 3 0

P3 3 0

I/O Queue

I/O Queue

I/O Queue

Ready Queue

I/O

CPU

I/O

I/O

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 111

 International Journal of Science and Advanced Innovative Research

Volume 3, Number 2, June 2018

Using a Gantt chart in the order: P1, P2, P3 it can be shown that the average

waiting time and turnaround time for the three processes: P1, P2, and P3 are: 17s

and 27s respectively.

 P1 P2 P3

 0 24 27 30

Figure 3: Gantt chart for processes P1, P2 and P3

Average Waiting Time (AWT):

P1+P2+P3 = (0+24+27)/3 = 17s

Average Turnaround Time (ATT):

P1+P2+P3 (24+27+30)/3 = 27s

However, if the order of the

processes is reversed as: P2, P3, P1

there is a substantial decrease in the

ATT to 13s.

 P2 P3 P1

 0 3 6 30

Figure 4: Gantt chart to illustrate FCFS scheduling algorithm

Average Turnaround Time (ATT): P2+P3+P1 (3+6+30)/3 = 13s

Similarly, the shortest-job-first (SJF)

process scheduling algorithm, also

referred to as shortest-process-next

(SPN) is a non pre-emptive scheme

in which the CPU is assigned to the

process with smallest CPU burst. If

the CPU bursts of two processes are

the same, FCFS scheduling is used

to resolve the queues. When a job

comes in, insertion is done on the

ready queue based on its length and

its gives the minimum average

waiting time and minimum average

turnaround time for a given set of

processes [24]. A pre-emptive SJF

algorithm will pre-empt the currently

executing process, whereas a non

pre-emptive SJF algorithm will not

pre-empt the currently running

process to finish its CPU burst [23],

[25]. The SJF algorithm favours jobs

(or processes) with shorter execution

time at the expense of processes with

longer ones. Among the major

problems with SJF is that it requires

precise understanding of how long a

job or process will run, and this

information is not readily available.

A typical scenario is shown below in

table 2.

Table 2: Process model for SJF scheduling algorithm

Process Burst Time Arrival

P1 6 0

P2 8 0

P3 7 0

P4 3 0

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 112

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using

Task-Based Priority Queues Data Structures

Using a Gantt chart in the order: P1, P2, P3, P4 it can be shown that the AWT

for the four processes: P1, P2, P3 and P4 is 7s with SJF of 10.25s respectively.

 P4 P1 P3 P2

 0 3 9 16 24

Figure 5: Gantt chart for processes P1, P2, P3 and P4

Average Waiting Time (AWT):

P1+P2+P3+P4 = (0+3+16+9)/3 =

7s. In another type of priority

scheduling known as Round Robin

(RR) Scheduling processes are

dispatched based on first-in-first-out

(FIFO) order. It is essentially the

pre-emptive version of FIFO. But

the proviso is that they are given the

CPU only for a limited amount of

time called a time-slice or quantum.

This approach is designed for time-

sharing systems. In each time slice

(quantum) the CPU executes the

current process only up to the end of

the time slice. The CPU scheduler

goes round the ready queue as shown

in figure 5, allocating the CPU to

each process for a time interval. If a

process does not complete before its

CPU-time expires, the CPU is pre-

empted and given to the next process

waiting in a queue. The pre-empted

process is then placed at the back of

the ready list [23], [24] and [26].

 Ready Queue Completion

 Pre-emption

Figure 6: Illustrating Round Robin scheduling algorithm

For instance, consider a hypothetical scenario with three (3) processes shown in

table 1.

Table 3: Process model for FCFS scheduling algorithm

Process Burst Time Arrival

P1 24 0

P2 3 0

P3 3 0

Using a Gantt chart in the order: P1,

P2, P3… it can be shown that the

average waiting time and turnaround

time for the three processes: P1, P2,

C B A CPU A

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 113

 International Journal of Science and Advanced Innovative Research

Volume 3, Number 2, June 2018

and P3 are: 5.66s and 17s

respectively.

P1 P2 P3 P1 . . . P1

 0 4 7 10 14 26 30

Figure 7: Gantt chart for processes P1, P2 and P3 for RR scheduling algorithm

Average Waiting Time (AWT): (0+4+7+(10-4))/3 = 5.66s

With FCFS: (0+24+27)/3 = 17s

RELATED WORKS

There is a wide body of literature

addressing the design of concurrent

priority queue algorithms for multi-

dimensional processes and small

scale machines. In this section an

overview is provided to analyze the

different scheduling mechanisms

which have been used for predictable

allocation of CPU so as to track

different research trends and

improvements made in this research

area so far. In one of this attempts,

[25] in Performance Assessment of

some CPU scheduling Algorithms,

compared different scheduling

algorithms on the basis of waiting

time and turnaround time. This

paper proceeded to give a brief

overview and deals with the problem

of deciding which of the processes in

the ready queue is to be allocated the

CPU. They evaluated the “short

Remaining Time First scheduling

algorithm. In this scheduling

algorithm the ready queue is

organized according to the burst

times of the processes. The routines

which require small amount of time

to execute are placed in front of the

queue. This algorithm is also a pre-

emptive scheduling algorithm. The

process with smallest burst time is

selected and assigned to CPU. If a

process with lower burst time as

compared to process which is

running comes in the queue, then the

process which is running is pre-

empted and the new process with

small burst time starts its execution

then the process is terminated and

removed from the waiting process

list. In other to ensure CPU

fairness, [26] proposed an algorithm

that allocates the CPU to every

process in Round Robin (RR)

fashion for an initial time quantum

(say n units). After completing first

cycle, it doubles the initial time

quantum (2n units) and allocates the

CPU to the processes in SJF format.

In other to resolve the CPU

scheduling conundrum [27] in “CPU

scheduling: A comparative study”,

discuss about scheduling policies of

CPU for computer systems. A

number of problems were solved to

find the appropriate among them.

Therefore, based on performance, the

shortest job first (SJF) algorithm is

suggested for the CPU scheduling

problems to decrease either the

average waiting time or average

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 114

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using

Task-Based Priority Queues Data Structures

turnaround time. Similarly, the first-

come-first-serve (FCFS) algorithm is

suggested for the CPU scheduling

problems to reduce either the average

CPU utilization or average

throughput. In [28], they proposed an

algorithm that allocates the CPU to

processes in RR fashion. After

executing each process for one time

quantum, it checks the remaining

burst time of the currently running

process for the remaining burst time,

else it moves the process to the tail

of the ready queue. In [29], they made

an improvement to the Longest Job

First (LJF) CPU scheduling

algorithm. It works by sorting the

process in descending order of their

CPU burst times and then it

determines a threshold known as

combined Weighted Average

(CWA) which is the average of the

processes. This is used to categorize

the processes into long and short

processes.

Furthermore, [24] proposed an

algorithm that focuses on an

additional improvement Round

Robin (AAIRR) CPU scheduling.

The algorithm reduces the no of

context switch, waiting time and

turnaround time drastically

compared to the improved Round

Robin (IRR) scheduling algorithm

and simple Round Robin scheduling

algorithm.

 METHODOLOGY

An analytical approach using a

combination of asymptotic algorithm

analysis; 2-D plots rendering and

graphs on MATHLAB and SPSS

platforms will be adopted in this

approach. The rationale for the

approach is informed by their

accurate, systematic and methodical

manner of rendering results with

visualization effects, which makes

its easy for deductions to be made

easily. In this paper we propose

concurrent priority queues based on

the highly distributed Skip List and

Skip Queue data structures of Pugh

[2]. Skip Lists are search data

structures based on hierarchically

ordered linked-lists, with a

probabilistic guarantee of being

balanced. The basic idea behind

SkipLists is to keep elements in an

ordered list, but have each record in

the list be part of up to a logarithmic

number of sub-lists. These sub-lists

play the same role as the levels of a

binary search structure, having twice

the number of items as one goes

down from one level to the next. To

search a list of N items, O (logN)

level lists are traversed, and a

constant number of items are

traversed per level, making the

expected overall complexity of an

Insert or Delete operation on a Skip

List O (logN) [3]. Similarly, Skip

Queue is a highly distributed

priority queue based on a simple

modification of Pugh's concurrent

SkipList algorithm [2]. Inserts in the

Skip Queue proceed down the levels

as in [2]. For Delete-min, multiple

“minimal" elements are to be handed

out concurrently. This means that

one must coordinate the requests,

with minimal contention and

bottlenecking, even though Delete-

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 115

 International Journal of Science and Advanced Innovative Research

Volume 3, Number 2, June 2018

mins are interleaved with Insert

operations. The choice of Skip

Queues data structures over prior

heap and tree data structures for our

simulation is informed by a number

of factors such as: distributed

locking; probabilistic balancing,

hence there is no need for a major

synchronized “rebalancing"

operation; Delete-min operations are

evenly distributed over the data

structure, hence minimizing locking

contention and the avoidance of need

to pre-allocate all memory, since the

structure is not placed in an array.

RESULTS

Computer simulation run of the

SkipList and SkipQueue data

structures using the algorithms and

pseudo-codes shown in algorithms 1,

2, and 3 respectively were performed

on Toshiba PC with Intel Core i5

64-bit processor architecture, with

Intel CPU running at 2.50 GHZ, 8

GB RAM memory on Windows 8.1

platform. MATLAB software

version 7.11.0 R2010b was used for

algorithm performance evaluation

and simulation so as to test the

performance and optimality of the

algorithms. The charts and 2-D plots

obtained are shown in figures 8 – 12

respectively.

Algorithm 1: Code for auxiliary procedure getLock

node_t * getLock(node_t * node1, key_t key, int level)

{

1 node2 = node1->next[level]

2 while (node2->key < key) { // Look for the node with the largest

3 node1 = node2 // key smaller than the key we're

4 node2 = node1->next[level] // searching for.

5 }

6 lock(node1, level) // Lock the node.

7 node2 = node1->next[level]

8 while (node2->key < key) { // Something changed before locking.

9 unlock(node1, level) // Unlock node.

10 node1 = node2 // Get the next node in the queue.

11 lock(node1, level) // Lock it.

12 node2 = node1->next[level]

13 }

14 return node1

 }

 int randomLevel()

{

1 int l = 1

2 while (random() < p)

3 l++

4 if (l > queue->maxLevel)

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 116

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using

Task-Based Priority Queues Data Structures

5 return queue->maxLevel

6 else

7 return l

 }

Algorithm 2: Code for inserting a node into the queue

int Insert(key_t key, value_t value)

 {

1 node1 = queue->Head // Search from the queue head

2 for (i = queue->max Level; i > 0; i--) { // search all levels.

3 node2 = node1->next[i]

4 while (node2->key > key) { // Find the place at this

5 node1 = node2 // level in which to

6 node2 = node2->next[i] // Insert the new node.

7 }

8 savedNodes[i] = node1 // Save the location that was found.

9 }

10 node1 = getLock(node1, key, 1)

11 node2 = node1->next[i]

12 if (node2->key == key) {

13 node2->value = value;

14 unlock (node1, 1)

15 return UPDATED

16 }

17 level = random Level () // Generate the level of the new node.

18 new Node = Create Node (level, key, value)

19 new Node->time Stamp = MAX_TIME; // Initialize the time stamp.

20 lock(new Node, NODE) // Lock the entire node.

21 for (i = 1; i <= level; i++) {

22 if (i != 1) // level 1 is already locked

23 node1 = getLock(savedNodes[i], key, i)

24 new Node->next[i] = node1->next[i] // insert the new node

25 node1->next[i] = new Node // into the queue.

26 unlock(node1, i)

27 }

28 unlock(newNode, NODE) // Release the lock on entire node.

29 new Node->time Stamp = get Time(); // Set the time stamp.

30 return INSERTED // The insertion was successful.

 Algorithm 3: Code for deleting the smallest node from the queue

int Delete_Min (value_t * value))

{

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 117

 International Journal of Science and Advanced Innovative Research

Volume 3, Number 2, June 2018

1 time = get Time (); // Mark the time at which the search starts.

2 node1 = queue->head->next [1] // Start search at start of first level.

3 while (node1 != queue->tail) { // Search until end of queue.

4 if (node1->time Stamp < time) { // Ignore all nodes that were

// inserted after search began.

5 marked = SWAP (node1->deleted, TRUE) // Swap the flag value.

6 if (marked == FALSE) // An unmarked node was found,

7 break // so end the search.

8 node1 = node1->next [1] // Move to next node.

9 }

10 }

11 if (node1 != queue->tail) { // We found an unmarked node

12 *value = node1->value // save its value

13 key = node1->key // and its key. 11 } 12 else

14 return EMPTY // No node was found in the queue.

15 node1 = queue->head // Start the search from the head.

16 for (i = queue->max Level; i > 0; i--) // Search all levels.

17 node2 = node1->next[i]

18 while (node2->key > key) { // Find the place at this

19 node1 = node2 // level in which the node

20 node2 = node2->next[i] // with the key is located.

21 } 22 savedNodes[i] = node1 // Save the location that was found.

23 }

24 node2 = node1

25 while (node2->key != key) // Make sure we have a pointer

26 node2 = node2->next[1] // to the node with the key.

27 lock(node2, NODE) // Lock the entire node to be deleted.

28 for (i = node2->level; i > 0; i--) {

29 node1 = get Lock(savedNodes[i], key, i) // Lock this level on

30 lock (node2, i) // the node to be deleted and node before it.

31 node1->next[i] = node2->next[i] // Remove the node from the

32 node2->next[i] = node1 // queue.

33 unlock(node2, i) // Release the locks on this level at

34 unlock(node1, i) // the deleted node and node before it.

35 }

36 unlock(node2, NODE) // Release the lock on entire node.

37 Put On Garbage List(node2) // Put the node on the garbage list.

38 return DELETE // Delete was successful.

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 118

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using

Task-Based Priority Queues Data Structures

0

20

40

60

80

100

120

140

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

COMPARISON CHART FOR BURSTING TIME,FCFS AND SJF

SCHEDULING ALGORITHM.

BURSTING TIME FCFS SJF

Figure 8: Comparison chart of bursting time for FCFS & SJF algorithms

Figure 9: The small structure benchmark

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 119

 International Journal of Science and Advanced Innovative Research

Volume 3, Number 2, June 2018

Figure 10: The large structure benchmark

Figure 11: SkipQueue vs. Relaxed SkipQueue for small structure

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 120

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using

Task-Based Priority Queues Data Structures

Figure 12 Skip Queue vs. Relaxed SkipQueue for large structure

DISCUSSION of RESULTS

Our implementation is based on the

SkipList implementation in [31]. The

code for the auxiliary procedures and

for the Insert is identical, and our

changes are in the Delete_Min

procedure which uses the Delete

operation for SkipLists provided in

[31]. We note that for compatibility

with earlier C-based SkipList

implementations, the interface of the

actual implemented code differs

slightly from the specification of

Section 4.2. An inserted item in the

Insert procedure is actually a pair of

key and value), where comparisons

are done on the key and the value is

just the stored item. The Insert

procedure returns a success code.

The Delete min operation returns

the deleted item's value in a

designated memory location, and

returns a notification of success or a

possible EMPTY SkipQueue.

The Comparison results in figure 8

shows that process two (P2) with the

bursting time of eighty-four (84) has

eight (8) ns timeslot for both First-

come-first-serve and shortest-job-

first CPU scheduling algorithms. In

this case the processor can choose

either to attend to any of the process

or job of shortest job First-come-

first-serve based on their arrival. The

chart also shows that the

comparison of process between

FCFS and SJF which indicates that

shortest job have comparative

advantage over First-come-First-

serve.

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 121

 International Journal of Science and Advanced Innovative Research

Volume 3, Number 2, June 2018

CONCLUSION

Different scheduling algorithms

have their merits and demerits.

However, this research work

recommended that in solving multi-

dimensional processes both the First-

Come-First-Serve and Shortest Job

First should be considered to

enhance effective and efficient

completion of job tasks.

REFERENCES

[1] Tanenbaum, A.S. (2008).

Modern Operating Systems,

Pearson Education Inc., Upper

Saddle River, New Jersey, p.

83.

[2] Pugh, W. (1990. Skip Lists: A

Probabilistic Alternative to

Balanced Trees. In

Communications of the

ACM, vol. 33, no. 6, p.668-676.

[3] Lotan, I., and Shavit, N. (2000).

Skip List-Based Concurrent

Priority Queues, proceedings

of the first International

Parallel and Distributed

Processing Symposium,

Cancun, Mexico.

[4] Ayani, R. (1991). Lr-algorithm:

concurrent operations on

priority queues. In Proceedings

of the 2nd IEEE Symposium on

Parallel and Distributed

Processing pp. 22-25.

[5] Biswas, J., and Browne, J.C.

Simultaneous Update of

Priority Structures. In

Proceedings of the 1987

International Conference on

Parallel Processing, August

1987, pp. 124-131.

[6] Sajal, K. D., Pinotti, M.C.,

Sarkar, F. (1996). Distributed

Priority Queues on Hypercube

Architectures. In International

Conference on Distributed

Computing Systems

(ICDCS), pp. 620-628.

[7] Deo, N., and Prasad, S. (1992).

Parallel Heap: An Optimal

Parallel Priority Queue. In The

Journal of Supercomputing,

Vol. 6, pp. 87-98.

[8] Huang, Q. (1991). An Evaluation

of Concurrent Priority Queue

Algorithms. Technical Report,

Massachusetts Institute of

Technology, MIT-

LCS/MIT/LCS/TR-497.

[9] Hunt, G.C., Michael, M.M.,

Parthasarathy, S., and Scott,

M.L. (1996). An Efficient

Algorithm for Concurrent

Priority Queue Heaps. In

Information Processing

Letters, vol. 60, no. 3, pp. 151-

157.

[10] Luchetti, C., and Pinotti, M.C.

(1993). Some comments on

building heaps in parallel. In

Information Processing

Letters, vol.47, no. 3, pp.145-

148, 14.

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 122

Models for Handling Multi-Dimensional Processes in Central Processing Unit Using

Task-Based Priority Queues Data Structures

[11] Mans, B. (1998). Portable

Distributed Priority

Queues with MPI. In

Concurrency: Practice and

Experience, vol. 10, no. 3,

pp. 175-198.

[12] Prasad, S.K., and Sawant,

S.I. (1995). Parallel Heap: A

Practical Priority Queue for

Fine-to-Medium-Grained

Applications on Small

Multiprocessors. In

Proceedings of the Seventh

IEEE Symposium on

Parallel and Distributed

Processing (SPDP 95).

[13] Ranade, A., Cheng, S.,

Deprit, E., Jones, J., and

Shih, S. (1994). Parallelism

and Locality in Priority

Queues. In IEEE

Symposium on Parallel and

Distributed Processing,

Dallas, Texas.

[14] Rao, V.N. and Kumar, V.

(1988). Concurrent access of

priority queues. IEEE

Transactions on

Computers, vol. 37, p. 1657-

1665.

[15] Sanders, P. (1995). Fast

priority queues for parallel

branch-and-bound. In

Workshop on Algorithms

for Irregularly Structured

Problems, no. 980 in

LNCS, Springer, pp. 379-

393, Lyon.

[16] Sanders, P. (1998).

Randomized Priority

Queues for Fast Parallel

Access. In Journal of

Parallel and Distributed

Computing, vol. 49, no. 1,

pp. 86 - 97.

[17] Yan, Y., and Zhang, X.

(1998). Lock Bypassing: An

Efficient Algorithm for

Concurrently Accessing

Priority Heaps. ACM

Journal of Experimental

Algorithmics, vol. 3,.

http://www.jea.acm.org/199

8/YanLock

[18] Mohan, J. (1983). Experience

with Two Parallel

Programs Solving the

Travelling Salesman

Problem. In Proceedings of

the 1983 International

Conference on Parallel

Processing, pp. 191-193.

[19] Quinn, M. J. and Deo, N.

(1984). Parallel Graph

Algorithms. In ACM

Computing Surveys, Vol.

16, No. 3, pp. 319-348.

[20] Boyar, J., Fagerberg, R., and

Larsen, K. S. (1994).

Chromatic Priority

Queues. Technical Report,

Department of

Mathematics and

Computer Science, Odense

University, pp. 1994-15.

A.H. Eneh, A. J. Jimoh & U. C. Arinze | 123

 International Journal of Science and Advanced Innovative Research

Volume 3, Number 2, June 2018

[21] Johnson, T. A. (1991).

Highly Concurrent Priority

Queue Based on the B-link

Tree. Technical Report,

University of Florida, pp.

91-007.

[22] Thakur, P. & Mahajan, M.

(2017). Different Scheduling

Algorithm in Cloud

Computing: A Survey.

International Journal of

Modern Computer Science,

Vol. 5, No. 1.

[23] Abdulrazaq, A., Aliyu, S.,

Mustapha, A.M., and

Abdullahi, S.E. (2014). An

Additional Improvement in

Round Robin (AAIRR)

CPU Scheduling

Algorithm. International

Journal of Advanced

Research in Computer

Science and Software

Engineering. Vol. 4, Issue 2.

[24] Joshi, R., and Tyagi, S.

(2015). Enhanced Priority

Scheduling Algorithm to

Minimize Process

Starvation. International

Journal of Emerging

Technology and Advanced

Engineering, Vol. 2, Issue

10.

[25] Oyetunji, E. O., and Oluleye,

A.E. (2009). Performance

Assessment of Some CPU

Scheduling Algorithms.

Research Journal of

Information Technology,

pp. 22-26.

[26] Ajit, S., Priyanka, G. And

Sahil, B. (2010). An

Optimized Round Robin

Scheduling. International

Journal on Computer

Science and Engineering

(IJCSE), Vol. 2, No. 7, pp.

2382-2385.

[27] Patell, J., and Sopanki, A.K.

(2011). CPU Scheduling: A

Comprehensive Study.

Proceedings of the 5
th

National Conference.

IndiaCom.

[28] Manish, K.M., Kadir, A. An

Improved Round Robin

CPU Scheduling

Algorithm. Journal of

Global Research in

Computer Science, Vol. 3,

No. 6, pp. 64-66.

[29] Abdullahi, I., and Junaidu,

S.B. Empirical Framework

to Migrate Problems in

Longer Job First Scheduling

Algorithm (LJF+CBT).

International Journal of

Computer Applications,

Vol. 75, No. 14, pp.9-14.

